scholarly journals Hydroxyurea Treatment Is Associated with Elevated Serum Erythropoietin Concentration but Suppressed Global Hypoxic Transcriptional Responses in Sickle Cell Disease

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3380-3380
Author(s):  
Xu Zhang ◽  
Wei Zhang ◽  
Binal Shah ◽  
Galina Miasnikova ◽  
Adelina Sergueeva ◽  
...  

Abstract Background The level of distorted erythrocytes due to polymerization of hemoglobin S in sickle cell disease (SCD) (Science 1949;110:543) is a major determinant of the severity of hemolysis and microvascular occlusion (Lancet 2010;376:2018). Erythropoietin (EPO) is elevated in SCD due to hemolytic anemia and a related increase in hypoxia-inducible factors (HIFs) (Eur J Haematol 2007;78:183). Hydroxyurea (HU) is widely used in the treatment of SCD. HU inhibits ribonucleotide reductase (Semin Oncol 1992;19(3 Suppl 9):1-10) and promotes γ globin synthesis thereby increasing HbF-containing erythrocytes (F cells) while suppressing sickle β hemoglobin production (J Clin Invest 1984;74:652 and 2003;111:231). Increased level of F cells reduces hemolysis and ameliorates clinical complications in SCD. We and others have observed an increase in serum EPO level with HU treatment in SCD despite an increase in the hemoglobin concentration, and we hypothesized that this may be due to the known increased affinity of hemoglobin F for oxygen and related tissue hypoxia (Blood 2009;114:4639). Methods Messenger RNA from peripheral blood mononuclear cells (PBMCs) was profiled using Affymetrix Human Exon 1.0 ST Array. Hypoxic transcriptional alteration was defined in 15 Chuvash polycythemia (CP) patients vs. 17 control individuals. CP leads to constitutive up-regulation of HIFs in the absence of anemia or hypoxia. Transcriptional alteration in SCD was determined in 13 HbSS subjects without HU treatment vs. 16 control individuals, and that induced by HU treatment was determined in 19 HbSS subjects with vs. 13 without HU treatment. For meta-analysis on serum EPO concentration, genomic DNA isolated from PBMCs was hybridized to the Illumina Human 610-Quad SNP array. Genotypes were imputed to 1000 genomes project phase 1 data. A linear regression model was applied adjusting for age, gender, hemoglobin concentration, and HU treatment. Results Gene expression changes by HbSS highly correlated with those associated with homozygous VHLR200W (Pearson's r=0.79, Figure 1A). At 5% false discovery rate (FDR), expression levels of 377 genes were altered in both VHLR200W homozygotes and HbSS by >1.2 fold. For these hypoxic genes, the correlation of expression changes between HbSS and homozygous VHLR200W reached r=0.97 (Figure 1B). In contrast to our hypothesis, HU treatment in general suppressed expression changes induced by HbSS (r=-0.85, Figure 1C), especially for the hypoxic genes (r=-0.95, Figure 1D). In VHLR200W homozygotes, 62 of the hypoxic genes correlated with plasma EPO levels (adjusted P<0.05, n=42). These EPO-correlated genes were the most strongly up-regulated hypoxic genes in HbSS (red points in Figure 1B) and also the most strongly suppressed by HU treatment (red points in Figure 1D). Consistent with previous observations, we found that EPO was elevated by HU treatment in two SCD cohorts, and this persisted after adjusting for covariates including hemoglobin concentration which reflects hypoxic as well as inflammatory and hemolytic responses: Walk-PHaSST (β=0.49, P=2.5×10-15, n=586) and PUSH children (β=0.34, P=2.5×10-7, n=387). This observation suggests that biological signals independent of hypoxic regulation may contribute to EPO production under HU treatment. In a meta-analysis for the Walk-PHaSST and PUSH children cohorts, SNP rs60684937, located within the first intron of MAP2K6, an upstream regulator of HIF signaling (Mole Cell Biol 2005; 25:4853), was significantly associated with EPO levels at genome-wide significance (combined P=3.5×10-8). The C allele of the SNP decreased EPO levels in both Walk-PHaSST (β=-0.30, n=388) and PUSH children (β=-0.24, n=249) cohorts. This association was validated in an additional 89 SCD patients from the Howard cohort (β=-0.39, P=0.011). Further investigations are needed to determine whether the causal polymorphism affects protein function or gene regulation of the nearby genes. Discussion Our study demonstrates a prominent release from hypoxic transcriptional responses by HU treatment in SCD despite an increase in serum EPO, a defining characteristic of an up-regulated hypoxic response. Our study hypothesizes that hypoxia-independent signals trigger EPO production in the setting of HU therapy and it identifies a potential genetic determinant in this alternative pathway. Figure 1. Figure 1. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2009 ◽  
Vol 114 (21) ◽  
pp. 4639-4644 ◽  
Author(s):  
Victor R. Gordeuk ◽  
Andrew Campbell ◽  
Sohail Rana ◽  
Mehdi Nouraie ◽  
Xiaomei Niu ◽  
...  

AbstractHydroxyurea and higher hemoglobin F improve the clinical course and survival in sickle cell disease, but their roles in protecting from pulmonary hypertension are not clear. We studied 399 children and adolescents with sickle cell disease at steady state; 38% were being treated with hydroxyurea. Patients on hydroxyurea had higher hemoglobin concentration and lower values for a hemolytic component derived from 4 markers of hemolysis (P ≤ .002) but no difference in tricuspid regurgitation velocity compared with those not receiving hydroxyurea; they also had higher hemoglobin F (P < .001) and erythropoietin (P = .012) levels. Hemoglobin F correlated positively with erythropoietin even after adjustment for hemoglobin concentration (P < .001). Greater hemoglobin F and erythropoietin each independently predicted higher regurgitation velocity in addition to the hemolytic component (P ≤ .023). In conclusion, increase in hemoglobin F in sickle cell disease may be associated with relatively lower tissue oxygen delivery as reflected in higher erythropoietin concentration. Greater levels of erythropoietin or hemoglobin F were independently associated with higher tricuspid regurgitation velocity after adjustment for degree of hemolysis, suggesting an independent relationship of hypoxia with higher systolic pulmonary artery pressure. The hemolysis-lowering and hemoglobin F–augmenting effects of hydroxyurea may exert countervailing influences on pulmonary blood pressure in sickle cell disease.


2002 ◽  
Vol 2 ◽  
pp. 1706-1728 ◽  
Author(s):  
Martin H. Steinberg

High fetal hemoglobin (HbF) levels inhibit the polymerization of sickle hemoglobin (HbS) and reduce the complications of sickle cell disease. Pharmacologic agents that can reverse the switch from γ- to β-chain synthesis — γ-globin chains characterize HbF, and sickle β-globin chains are present in HbS — or selectively increase the proportion of adult erythroid precursors that maintain the ability to produce HbF are therapeutically useful. Hydroxyurea promotes HbF production by perturbing the maturation of erythroid precursors. This treatment increases the total hemoglobin concentration, reduces the vaso-occlusive complications of pain and acute chest syndrome, and attenuates mortality in adults. It is a promising beginning for pharmacologic therapy of sickle cell disease. Still, its effects are inconsistent, trials in infants and children are ongoing, and its ultimate value — and peril — when started early in life are still unknown.


Blood ◽  
1999 ◽  
Vol 94 (9) ◽  
pp. 3022-3026 ◽  
Author(s):  
Russell E. Ware ◽  
Sherri A. Zimmerman ◽  
William H. Schultz

Abstract Children with sickle cell disease (SCD) and stroke receive chronic transfusions to prevent stroke recurrence. Transfusion risks including infection, erythrocyte allosensitization, and iron overload suggest a need for alternative therapies. We previously used hydroxyurea (HU) and phlebotomy in two young adults with SCD and stroke as an alternative to transfusions. We have now prospectively discontinued transfusions in 16 pediatric patients with SCD and stroke. Reasons to discontinue transfusions included erythrocyte alloantibodies or autoantibodies, recurrent stroke on transfusions, iron overload, noncompliance, and deferoxamine allergy. HU was started at 15 mg/kg/d and escalated to 30 mg/kg/d based on hematologic toxicity. Patients with iron overload underwent phlebotomy. The children have been off transfusions 22 months, (range, 3 to 52 months). Their average HU dose is 24.9 ± 4.2 mg/kg/d, hemoglobin concentration is 9.4 ± 1.3 g/dL, and mean corpuscular volume (MCV) is 112 ± 9 fL. Maximum percentage fetal hemoglobin (%HbF) is 20.6% ± 8.0% and percentage HbF-containing erythrocytes (%F cells) is 79.3% ± 14.7%. Fourteen patients underwent phlebotomy with an average of 8,993 mL (267 mL/kg) removed. Serum ferritin has decreased from 2,630 to 424 ng/mL, and 4 children have normal ferritin values. Three patients (19%) had neurological events considered recurrent stroke, each 3 to 4 months after discontinuing transfusions, but before maximal HU effects. These preliminary data suggest some children with SCD and stroke may discontinue chronic transfusions and use HU therapy to prevent stroke recurrence. Phlebotomy is well-tolerated and significantly reduces iron overload. Modifications in HU therapy to raise HbF more rapidly might increase protection against stroke recurrence.


Blood ◽  
2001 ◽  
Vol 97 (7) ◽  
pp. 2165-2167 ◽  
Author(s):  
Markus Schmugge ◽  
Hannes Frischknecht ◽  
Yasuhiro Yonekawa ◽  
Ralf W. Baumgartner ◽  
Eugen Boltshauser ◽  
...  

Abstract An 11-year-old boy with hemoglobin sickle disease (HbSD), bilateral stenosis of the intracranial carotid arteries, and moyamoya syndrome had recurrent ischemic strokes with aphasia and right hemiparesis. His parents (Jehovah's Witnesses) refused blood transfusions. After bilateral extracranial–intracranial (EC-IC) bypass surgery, hydroxyurea treatment increased hemoglobin F (HbF) levels to more than 30%. During a follow-up of 28 months, flow velocities in the basal cerebral arteries remained stable, neurologic sequelae regressed, and ischemic events did not recur. This is the first report of successful hydroxyurea treatment after bypass surgery for intracranial cerebral artery obstruction with moyamoya syndrome in sickle cell disease. The patient's religious background contributed to an ethically challenging therapeutic task.


Blood ◽  
1991 ◽  
Vol 78 (1) ◽  
pp. 212-216 ◽  
Author(s):  
EP Orringer ◽  
DS Blythe ◽  
AE Johnson ◽  
G Jr Phillips ◽  
GJ Dover ◽  
...  

A rationale for clinical trials of hydroxyurea (HU) treatment in sickle cell disease is that the agent increases red blood cell (RBC) fetal hemoglobin content. However, an additional effect of HU is to raise the mean corpuscular volume (MCV). To investigate the action of HU in a species that makes no electrophoretically distinguishable fetal hemoglobin, we treated dogs with the drug and compared their response to that of five patients with sickle cell anemia. Both dogs and patients had an increase in MCV, but the effect of HU treatment on the mean corpuscular hemoglobin concentration (MCHC), density, and water content of the RBCs differed in the two species. The dog RBCs became low in MCHC, high in ion and water content, and low in mean density. Thus, HU can raise MCV and lower MCHC without influencing fetal hemoglobin synthesis. A different pattern was seen in the sickle cell patients during HU treatment. Although the MCV of their RBCs increased, there was no change in MCHC, ion content, or mean density. A notable change in the sickle cell patients' blood was that two subpopulations of cells were nearly eliminated during HU treatment; the hypodense reticulocyte fraction and the hyperdense fraction that contains irreversibly sickled cells. These findings lead us to suggest that trials of HU in sickle cell disease must recognize the possibility that any beneficial effect of this agent might be due not only to an increase in hemoglobin F alone, but perhaps also to the associated increase in MCV or the altered RBC density profile.


Author(s):  
Stacy J. Marcus ◽  
Thomas R. Kinney ◽  
William H. Schultz ◽  
Erin E. O'Branski ◽  
Russell E. Ware

Blood ◽  
1999 ◽  
Vol 94 (9) ◽  
pp. 3022-3026 ◽  
Author(s):  
Russell E. Ware ◽  
Sherri A. Zimmerman ◽  
William H. Schultz

Children with sickle cell disease (SCD) and stroke receive chronic transfusions to prevent stroke recurrence. Transfusion risks including infection, erythrocyte allosensitization, and iron overload suggest a need for alternative therapies. We previously used hydroxyurea (HU) and phlebotomy in two young adults with SCD and stroke as an alternative to transfusions. We have now prospectively discontinued transfusions in 16 pediatric patients with SCD and stroke. Reasons to discontinue transfusions included erythrocyte alloantibodies or autoantibodies, recurrent stroke on transfusions, iron overload, noncompliance, and deferoxamine allergy. HU was started at 15 mg/kg/d and escalated to 30 mg/kg/d based on hematologic toxicity. Patients with iron overload underwent phlebotomy. The children have been off transfusions 22 months, (range, 3 to 52 months). Their average HU dose is 24.9 ± 4.2 mg/kg/d, hemoglobin concentration is 9.4 ± 1.3 g/dL, and mean corpuscular volume (MCV) is 112 ± 9 fL. Maximum percentage fetal hemoglobin (%HbF) is 20.6% ± 8.0% and percentage HbF-containing erythrocytes (%F cells) is 79.3% ± 14.7%. Fourteen patients underwent phlebotomy with an average of 8,993 mL (267 mL/kg) removed. Serum ferritin has decreased from 2,630 to 424 ng/mL, and 4 children have normal ferritin values. Three patients (19%) had neurological events considered recurrent stroke, each 3 to 4 months after discontinuing transfusions, but before maximal HU effects. These preliminary data suggest some children with SCD and stroke may discontinue chronic transfusions and use HU therapy to prevent stroke recurrence. Phlebotomy is well-tolerated and significantly reduces iron overload. Modifications in HU therapy to raise HbF more rapidly might increase protection against stroke recurrence.


Blood ◽  
1996 ◽  
Vol 88 (12) ◽  
pp. 4701-4710 ◽  
Author(s):  
KR Bridges ◽  
GD Barabino ◽  
C Brugnara ◽  
MR Cho ◽  
GW Christoph ◽  
...  

During 24 weeks of hydroxyurea treatment, we monitored red blood cell (RBC) parameters in three patients with sickle cell disease, including F-cell and F-reticulocyte profiles, distributions of delay times for intracellular polymerization, sickle erythrocyte adherence to human umbilical vein endothelial cells in a laminar flow chamber, RBC phthalate density profiles, mean corpuscular hemoglobin concentration and cation content, reticulocyte mean corpuscular hemoglobin concentration, 1H-nuclear magnetic resonance transverse relaxation rates of packed RBCs, and plasma membrane lateral and rotational mobilities of band 3 and glycophorins. Hydroxyurea increases the fraction of cells with sufficiently long delay times to escape the microcirculation before polymerization begins. Furthermore, high pretreatment adherence to human umbilical vein endothelial cells of sickle RBCs decreased to normal after only 2 weeks of hydroxyurea treatment, preceding the increase in fetal hemoglobin levels. The lower adhesion of sickle RBCs to endothelium would facilitate escape from the microcirculation before polymerization begins. Hydroxyurea shifted several biochemical and biophysical parameters of sickle erythrocytes toward values observed with hemoglobin SC disease, suggesting that hydroxyurea moderates sickle cell disease toward the milder, but still clinically significant, hemoglobin SC disease. The 50% reduction in sickle crises documented in the Multicenter Study of Hydroxyurea in Sickle Cell Disease is consistent with this degree of erythrocyte improvement.


BMJ Open ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. e034147
Author(s):  
Howard Thom ◽  
Jeroen Jansen ◽  
Jason Shafrin ◽  
Lauren Zhao ◽  
George Joseph ◽  
...  

ObjectivesTreatment options for preventing vaso-occlusive crises (VOC) among patients with sickle cell disease (SCD) are limited, especially if hydroxyurea treatment has failed or is contraindicated. A systematic literature review (SLR) and network meta-analysis (NMA) were conducted to evaluate the efficacy and safety of crizanlizumab for older adolescent and adult (≥16 years old) SCD patients.MethodsThe SLR included randomised controlled trials (RCTs) and uncontrolled studies. Bayesian NMA of VOC, all-cause hospitalisation days and adverse events were conducted.ResultsThe SLR identified 51 studies and 9 RCTs on 14 treatments that met the NMA inclusion criteria. The NMA found that crizanlizumab 5.0 mg/kg was associated with a reduction in VOC (HR 0.55, 95% credible interval (0.43, 0.69); Bayesian probability of superiority >0.99), all-cause hospitalisation days (0.58 (0.50, 0.68); >0.99) and no evidence of difference on adverse events (0.91 (0.59, 1.43) 0.66) or serious adverse events (0.93 (0.47, 1.87); 0.59) compared with placebo. The HR for reduction in VOC for crizanlizumab relative to L-glutamine was (0.67 (0.50, 0.88); >0.99). These results were sensitive to assumptions regarding whether patient age is an effect modifier.ConclusionsThis NMA provides preliminary evidence comparing the efficacy of crizanlizumab with other treatments for VOC prevention.


Blood ◽  
1991 ◽  
Vol 78 (1) ◽  
pp. 212-216 ◽  
Author(s):  
EP Orringer ◽  
DS Blythe ◽  
AE Johnson ◽  
G Jr Phillips ◽  
GJ Dover ◽  
...  

Abstract A rationale for clinical trials of hydroxyurea (HU) treatment in sickle cell disease is that the agent increases red blood cell (RBC) fetal hemoglobin content. However, an additional effect of HU is to raise the mean corpuscular volume (MCV). To investigate the action of HU in a species that makes no electrophoretically distinguishable fetal hemoglobin, we treated dogs with the drug and compared their response to that of five patients with sickle cell anemia. Both dogs and patients had an increase in MCV, but the effect of HU treatment on the mean corpuscular hemoglobin concentration (MCHC), density, and water content of the RBCs differed in the two species. The dog RBCs became low in MCHC, high in ion and water content, and low in mean density. Thus, HU can raise MCV and lower MCHC without influencing fetal hemoglobin synthesis. A different pattern was seen in the sickle cell patients during HU treatment. Although the MCV of their RBCs increased, there was no change in MCHC, ion content, or mean density. A notable change in the sickle cell patients' blood was that two subpopulations of cells were nearly eliminated during HU treatment; the hypodense reticulocyte fraction and the hyperdense fraction that contains irreversibly sickled cells. These findings lead us to suggest that trials of HU in sickle cell disease must recognize the possibility that any beneficial effect of this agent might be due not only to an increase in hemoglobin F alone, but perhaps also to the associated increase in MCV or the altered RBC density profile.


Sign in / Sign up

Export Citation Format

Share Document