scholarly journals Identification of hemopoietic cells responsive to colony-stimulating factor by autoradiography

Blood ◽  
1983 ◽  
Vol 62 (6) ◽  
pp. 1197-1202 ◽  
Author(s):  
RK Shadduck ◽  
G Pigoli ◽  
C Caramatti ◽  
G Degliantoni ◽  
V Rizzoli ◽  
...  

Abstract Binding of radiolabeled L-cell colony-stimulating factor (CSF) was studied using murine bone marrow and fetal liver cells. With 10(7) cells, saturation of binding was seen with approximately 500,000 cpm of 125I-CSF. Minimal binding was detected after one hour incubation with tracer at 37 degrees C; however, marked cellular uptake of radioactivity was noted after 24-hr exposure to CSF. As judged by autoradiographs, small numbers of myeloblasts, promyelocytes, and large mononuclear cells were labeled with 1-hr exposure to tracer. By 6 hr of incubation, 50%-70% of myeloblasts and promyelocytes and small numbers of late granulocytic cells were labeled. Virtually all myeloblasts and promyelocytes and approximately 50% of myelocytes, metamyelocytes, polymorphonuclear granulocytes, and monocytes were labeled after 24-hr exposure to the radioiodinated CSF. Label was not detected on erythroblasts, eosinophils, or megakaryocytes. Suspensions of fetal liver cells had lower uptake of radioactivity than bone marrow cells. This appeared to result from a lesser concentration of granulocytic cells in fetal liver, as labeling of individual cells was similar with both tissues. In additional experiments, CSF binding to marrow cells was assessed after 30-min exposure to tracer at 0 degrees C. Uptake of 125I-CSF exceeded that observed after 24-hr incubation at 37 degrees C. With this technique, cellular label was also confined to granulocytic and monocytic cells. These findings suggest that purified CSF reacts with and may stimulate immature and mature cells of the granulocytic and monocytic lineages.

Blood ◽  
1983 ◽  
Vol 62 (6) ◽  
pp. 1197-1202
Author(s):  
RK Shadduck ◽  
G Pigoli ◽  
C Caramatti ◽  
G Degliantoni ◽  
V Rizzoli ◽  
...  

Binding of radiolabeled L-cell colony-stimulating factor (CSF) was studied using murine bone marrow and fetal liver cells. With 10(7) cells, saturation of binding was seen with approximately 500,000 cpm of 125I-CSF. Minimal binding was detected after one hour incubation with tracer at 37 degrees C; however, marked cellular uptake of radioactivity was noted after 24-hr exposure to CSF. As judged by autoradiographs, small numbers of myeloblasts, promyelocytes, and large mononuclear cells were labeled with 1-hr exposure to tracer. By 6 hr of incubation, 50%-70% of myeloblasts and promyelocytes and small numbers of late granulocytic cells were labeled. Virtually all myeloblasts and promyelocytes and approximately 50% of myelocytes, metamyelocytes, polymorphonuclear granulocytes, and monocytes were labeled after 24-hr exposure to the radioiodinated CSF. Label was not detected on erythroblasts, eosinophils, or megakaryocytes. Suspensions of fetal liver cells had lower uptake of radioactivity than bone marrow cells. This appeared to result from a lesser concentration of granulocytic cells in fetal liver, as labeling of individual cells was similar with both tissues. In additional experiments, CSF binding to marrow cells was assessed after 30-min exposure to tracer at 0 degrees C. Uptake of 125I-CSF exceeded that observed after 24-hr incubation at 37 degrees C. With this technique, cellular label was also confined to granulocytic and monocytic cells. These findings suggest that purified CSF reacts with and may stimulate immature and mature cells of the granulocytic and monocytic lineages.


Blood ◽  
1982 ◽  
Vol 59 (2) ◽  
pp. 408-420 ◽  
Author(s):  
G Pigoli ◽  
A Waheed ◽  
RK Shadduck

Abstract Radioiodinated L-cell-derived colony-stimulating factor (CSF) was used to characterize the binding reaction to murine bone marrow cells. The major increment in cell-associated radioactivity occurred over 24 hr incubation at 37 degrees C, but virtually no binding was observed at 4 degrees C. The reaction was saturable with approximately 1 ng/ml of purified CSF. Unlabeled CSF prevented the binding, whereas a number of other hormones and proteins did not compete for CSF uptake. Further specificity studies showed virtually no binding to human bone marrow, which is unresponsive to this form of murine CSF. Minimal CSF uptake was noted with murine peritoneal macrophages, but virtually no binding was detected with thymic, lymph node, liver, or kidney cells. The marrow cell interaction with tracer appeared to require a new protein synthesis, as the binding was prevented by cycloheximide or puromycin. Preincubation of marrow cells in medium devoid of CSF increased the degree of binding after 1 hr exposure to the tracer. This suggests that CSF binding sites may be occupied or perhaps decreased in response to ambient levels of CSF in vivo. Approximately 70% of the bound radioactivity was detected in the cytoplasm at 24 hr. This material was partially degraded as judged by a decrease in molecular weight from approximately 62,000 to 2 peaks of approximately 32,000 and approximately 49,000, but 72% of the binding activity was retained. After plateau binding was achieved, greater than 80% of the radioactivity released into the medium was degraded into biologically inactive peptides with molecular weights less than 10,000. These findings suggest that the interaction of CSF with marrow cells is characterized by binding with subsequent internalization and metabolic degradation into portions of the molecule that are devoid of biologic activity.


Blood ◽  
1994 ◽  
Vol 84 (2) ◽  
pp. 433-439 ◽  
Author(s):  
C Richardson ◽  
M Ward ◽  
S Podda ◽  
A Bank

Abstract We have been transducing mouse hematopoietic cells with the human MDR1 (MDR) gene in retroviral vectors to determine the optimal conditions for retroviral gene transfer as a model system for potential human gene therapy. In these studies, we have demonstrated transduction and expression of the human MDR gene using ecotropic and amphotropic MDR- retroviral producer lines. To obtain more mouse hematopoietic cells for detailed study, mouse fetal liver cells (FLC) have been used for MDR transduction and expression, and to reconstitute the ablated marrows of live adult mice. FLC contain hematopoietic cells that have a reconstituting capacity comparable to that of adult mouse bone marrow cells. However, to our surprise, FLC can only be transduced with ecotropic retrovirus and not with amphotropic virus. This restriction of transduction of FLC cannot be overcome by higher titer virus. The resistance to amphotropic transduction by FLC may be part of a changing developmental program that results in a different antigen repertoire on FLC as compared with adult bone marrow cells.


Blood ◽  
1994 ◽  
Vol 84 (2) ◽  
pp. 433-439
Author(s):  
C Richardson ◽  
M Ward ◽  
S Podda ◽  
A Bank

We have been transducing mouse hematopoietic cells with the human MDR1 (MDR) gene in retroviral vectors to determine the optimal conditions for retroviral gene transfer as a model system for potential human gene therapy. In these studies, we have demonstrated transduction and expression of the human MDR gene using ecotropic and amphotropic MDR- retroviral producer lines. To obtain more mouse hematopoietic cells for detailed study, mouse fetal liver cells (FLC) have been used for MDR transduction and expression, and to reconstitute the ablated marrows of live adult mice. FLC contain hematopoietic cells that have a reconstituting capacity comparable to that of adult mouse bone marrow cells. However, to our surprise, FLC can only be transduced with ecotropic retrovirus and not with amphotropic virus. This restriction of transduction of FLC cannot be overcome by higher titer virus. The resistance to amphotropic transduction by FLC may be part of a changing developmental program that results in a different antigen repertoire on FLC as compared with adult bone marrow cells.


2002 ◽  
Vol 115 (6) ◽  
pp. 1285-1293 ◽  
Author(s):  
So-ichiro Fukada ◽  
Yuko Miyagoe-Suzuki ◽  
Hiroshi Tsukihara ◽  
Katsutoshi Yuasa ◽  
Saito Higuchi ◽  
...  

The myogenic potential of bone marrow and fetal liver cells was examined using donor cells from green fluorescent protein (GFP)-gene transgenic mice transferred into chimeric mice. Lethally irradiated X-chromosome-linked muscular dystrophy (mdx) mice receiving bone marrow cells from the transgenic mice exhibited significant numbers of fluorescence+ and dystrophin+ muscle fibres. In order to compare the generating capacity of fetal liver cells with bone marrow cells in neonatal chimeras,these two cell types from the transgenic mice were injected into busulfantreated normal or mdx neonatal mice, and muscular generation in the chimeras was examined. Cardiotoxin-induced (or -uninduced, for mdx recipients) muscle regeneration in chimeras also produced fluorescence+ muscle fibres. The muscle reconstitution efficiency of the bone marrow cells was almost equal to that of fetal liver cells. However, the myogenic cell frequency was higher in fetal livers than in bone marrow. Among the neonatal chimeras of normal recipients, several fibres expressed the fluorescence in the cardiotoxin-untreated muscle. Moreover,fluorescence+ mononuclear cells were observed beneath the basal lamina of the cardiotoxin-untreated muscle of chimeras, a position where satellite cells are localizing. It was also found that mononuclear fluorescence+ and desmin+ cells were observed in the explantation cultures of untreated muscles of neonatal chimeras. The fluorescence+ muscle fibres were generated in the second recipient mice receiving muscle single cells from the cardiotoxin-untreated neonatal chimeras. The results suggest that both bone marrow and fetal liver cells may have the potential to differentiate into muscle satellite cells and participate in muscle regeneration after muscle damage as well as in physiological muscle generation.


Blood ◽  
1973 ◽  
Vol 41 (2) ◽  
pp. 285-291 ◽  
Author(s):  
Ilan Bleiberg ◽  
Gershon Perah ◽  
Michael Feldman

Abstract Polycythemic x-irradiated female mice, injected with 12-day fetal liver cells, showed 81% suppression of erythroid spleen colonies as compared with nonpolycythemic recipients. On the other hand, in male recipients only 16% suppression was observed. Hence, androgenic hormones seem to play a role in regulating erythropoiesis of explanted fetal stem cells. To test this, we examined the effect of testosterone injected into polycythemic female recipients on the production of erythroid colonies from fetal liver cells. Testosterone was found to alleviate the suppressive effect of polycythemia. Antierythropoietin prevented the appearance of erythroid colonies in testosterone-treated animals. Thus, testosterone seems to act by increasing the levels of, or susceptibility to erythropoietin. Under similar conditions, testosterone did not trigger the formation of erythroid colonies from bone marrow cells in polycythemic recipients. Hence, fetal cells can be induced to form erythroid colonies by doses of erythropoietin that are too low to induce erythroid colonies in bone marrow cells.


Blood ◽  
2002 ◽  
Vol 99 (5) ◽  
pp. 1870-1872 ◽  
Author(s):  
Patricia A. Taylor ◽  
Ronald T. McElmurry ◽  
Christopher J. Lees ◽  
David E. Harrison ◽  
Bruce R. Blazar

In utero transplantation (IUT) is becoming a viable option for the treatment of various immune and metabolic disorders diagnosed early in gestation. In this study, donor fetal liver cells had a 10-fold competitive engraftment advantage relative to adult bone marrow in allogeneic fetal severe combined immunodeficient (SCID) recipients compared with adult recipients. In contrast, adult bone marrow cells engrafted slightly better than fetal liver cells in allogeneic adult SCID transplant recipients. By using different ratios of fetal and adult cell mixtures, fetal liver cells repopulated 8.2 times better than adult bone marrow cells in fetal recipients, but only 0.8 times as well in adult recipients. Fetal SCID recipients were more permissive to an allogeneic donor graft than adult recipients. These data indicate that the recipient microenvironment may regulate the engraftment efficiency of a given stem cell source and suggest that the use of cord blood should be tested in clinical IUT.


Sign in / Sign up

Export Citation Format

Share Document