scholarly journals Hyposialylation of differentiation-inducer-resistant HL-60 cells

Blood ◽  
1986 ◽  
Vol 68 (6) ◽  
pp. 1402-1406
Author(s):  
RE Gallagher ◽  
DA Giangiulio ◽  
CS Chang ◽  
CJ Glover ◽  
RL Felsted

The total sialic acid concent of retinoic acid (RA)-resistant or 6- thioguanine (6TG)-resistant HL-60 cells was more than tenfold lower and of dimethylsulfoxide (DMSO)-resistant HL-60 cells was approximately twofold lower than that of parental, wild-type (wt) HL-60 cells. Neuraminidase-inaccessible, ie residual cell-associated sialic acid after neuraminidase treatment, was four- to twelvefold lower in the three differentiation-inducer-resistant sublines than in the parent line. Neuraminidase treatment of 125I-labeled surface membrane glycoproteins (SMGs) from wt HL-60 cells converted the two-dimensional gel electrophoretic pattern to one having features in common with RA- and 6TG-resistant cells. However, neuraminidase treatment did not alter the sensitivity of wt HL-60 cells to differentiation induction by RA, hypoxanthine (purine base), or DMSO. These results indicate that differences in peripheral, neuraminidase-accessible sialic acids are important determinants of the gel electrophoretic mobility of the SMGs of the HL-60 line and sublines but are not likely related to the differentiation-resistance mechanism. Further studies are required to determine if hyposialylation of cryptic, neuraminidase-inaccessible sites has functional significance.

Blood ◽  
1986 ◽  
Vol 68 (6) ◽  
pp. 1402-1406 ◽  
Author(s):  
RE Gallagher ◽  
DA Giangiulio ◽  
CS Chang ◽  
CJ Glover ◽  
RL Felsted

Abstract The total sialic acid concent of retinoic acid (RA)-resistant or 6- thioguanine (6TG)-resistant HL-60 cells was more than tenfold lower and of dimethylsulfoxide (DMSO)-resistant HL-60 cells was approximately twofold lower than that of parental, wild-type (wt) HL-60 cells. Neuraminidase-inaccessible, ie residual cell-associated sialic acid after neuraminidase treatment, was four- to twelvefold lower in the three differentiation-inducer-resistant sublines than in the parent line. Neuraminidase treatment of 125I-labeled surface membrane glycoproteins (SMGs) from wt HL-60 cells converted the two-dimensional gel electrophoretic pattern to one having features in common with RA- and 6TG-resistant cells. However, neuraminidase treatment did not alter the sensitivity of wt HL-60 cells to differentiation induction by RA, hypoxanthine (purine base), or DMSO. These results indicate that differences in peripheral, neuraminidase-accessible sialic acids are important determinants of the gel electrophoretic mobility of the SMGs of the HL-60 line and sublines but are not likely related to the differentiation-resistance mechanism. Further studies are required to determine if hyposialylation of cryptic, neuraminidase-inaccessible sites has functional significance.


Blood ◽  
1985 ◽  
Vol 66 (3) ◽  
pp. 606-613
Author(s):  
RL Felsted ◽  
SK Gupta ◽  
CJ Glover ◽  
RE Gallagher

Surface membrane glycoproteins (SMGs) of cells from the parental wild- type HL-60 cell line and from three sublines variably cross-resistant to the granulocyte differentiation-inducing effects of retinoic acid (RA), dimethylsulfoxide (DMSO), and certain purine bases (6-thioguanine [6TG] or hypoxanthine) were studied by one-dimensional and two- dimensional gel electrophoresis. After both oligosaccharide (periodate/borotritide) and peptide (1,3,4,6-tetrachloro-3 alpha, 6 alpha-diphenylglycouril) ectolabeling procedures, striking common changes were noted in the gel electrophoretic patterns of the SMGs from the RA- and 6TG-resistant sublines compared to those from the wild-type HL-60 line or the DMSO-resistant subline. Most prominently, this included the presence in the RA- and 6TG-resistant cells of an apparent high molecular weight acidic glycoprotein(s) (mol wt, 200 to 285 kilodaltons [kD]; isoelectric point range [pl], 4.5 to 6.0) not observed in the wild-type or DMSO-resistant cells and, conversely, the presence of a lower molecular weight glycoprotein(s) (mol wt, 120 to 165 kD; pl, 4.2 to 5.9) in the wild-type and DMSO-resistant cells, which was absent or much reduced in the RA- and 6TG-resistant cells. These acidic SMGs did not change as a function of the induction of granulocyte differentiation. However, some other more basic SMGs varied as a function of granulocyte differentiation in both the wild-type and differentiation inducer-resistant sublines, including the loss of the transferrin receptor and the gain of a mol wt 55- to 60-kD neutrophil- associated protein. In the context of previously reported information, these results indicate (1) that the overall pattern of SMG changes in the RA- and 6TG-resistant cells closely resembles that associated with multidrug (pleiotropic) resistance to cytotoxic agents in a variety of mammalian cells; (2) that the RA/6TG resistance-associated SMG changes are not granulocyte differentiation stage-specific; and (3) that either the RA/6TG resistance-associated SMG changes are not related to the resistance mechanism or they are involved in the resistance/cross- resistance mechanism(s) for RA/purine bases but not for DMSO.


Blood ◽  
1985 ◽  
Vol 66 (3) ◽  
pp. 606-613 ◽  
Author(s):  
RL Felsted ◽  
SK Gupta ◽  
CJ Glover ◽  
RE Gallagher

Abstract Surface membrane glycoproteins (SMGs) of cells from the parental wild- type HL-60 cell line and from three sublines variably cross-resistant to the granulocyte differentiation-inducing effects of retinoic acid (RA), dimethylsulfoxide (DMSO), and certain purine bases (6-thioguanine [6TG] or hypoxanthine) were studied by one-dimensional and two- dimensional gel electrophoresis. After both oligosaccharide (periodate/borotritide) and peptide (1,3,4,6-tetrachloro-3 alpha, 6 alpha-diphenylglycouril) ectolabeling procedures, striking common changes were noted in the gel electrophoretic patterns of the SMGs from the RA- and 6TG-resistant sublines compared to those from the wild-type HL-60 line or the DMSO-resistant subline. Most prominently, this included the presence in the RA- and 6TG-resistant cells of an apparent high molecular weight acidic glycoprotein(s) (mol wt, 200 to 285 kilodaltons [kD]; isoelectric point range [pl], 4.5 to 6.0) not observed in the wild-type or DMSO-resistant cells and, conversely, the presence of a lower molecular weight glycoprotein(s) (mol wt, 120 to 165 kD; pl, 4.2 to 5.9) in the wild-type and DMSO-resistant cells, which was absent or much reduced in the RA- and 6TG-resistant cells. These acidic SMGs did not change as a function of the induction of granulocyte differentiation. However, some other more basic SMGs varied as a function of granulocyte differentiation in both the wild-type and differentiation inducer-resistant sublines, including the loss of the transferrin receptor and the gain of a mol wt 55- to 60-kD neutrophil- associated protein. In the context of previously reported information, these results indicate (1) that the overall pattern of SMG changes in the RA- and 6TG-resistant cells closely resembles that associated with multidrug (pleiotropic) resistance to cytotoxic agents in a variety of mammalian cells; (2) that the RA/6TG resistance-associated SMG changes are not granulocyte differentiation stage-specific; and (3) that either the RA/6TG resistance-associated SMG changes are not related to the resistance mechanism or they are involved in the resistance/cross- resistance mechanism(s) for RA/purine bases but not for DMSO.


1981 ◽  
Author(s):  
B Toor ◽  
J L McGregor ◽  
K J Clemetson ◽  
L McGregor ◽  
M Dechavanne ◽  
...  

Rabbit and rat platelets have been extensively investigated under in vitro or in vivo conditions to try to understand the pathology of thrombosis in man. Here, surface-labelling techniques have been used to find out if the platelet surface has a similar composition in these two animals and in man or not. Human, rabbit and rat platelets were isolated, washed and surface-labelled by techniques specific for protein or for sugars (sialic acid or penultimate galactose/N-acetyl galactosamine residues). Labelled platelets were solubilized in sodium dodecyl sulphate and separated under reducing conditions on 7.5 % Laemmli polyacrylamide gels. Dried gels were exposed to film by fluorography or indirect autoradiography. Terminal Gal/Gal NAc residues (no neuraminidase treatment) were strongly labelled with rat and rabbit platelets compared to human platelets which labelled very poorly. Terminal sialic acid labelling with rat and rabbit platelets showed a weak labelling of a glycoprotein (GP) with the same M.Wt. as GPIb which is the most intensely labelled GP in man. However two GP (with rabbits) and one GP (in rats) were intensely labelled at a M.Wt. similar to that of GPIa in man. These GP had a different M.Wt. with terminal Gal/Gal NAc labelling. Bands with a similar M.Wt. to GPIIb and IIIa in man were strongly iodinated with rabbit platelets but with rat platelets only a single band at the position of GPIIb was strongly iodinated. These results strongly indicate that there are considerable differences in surface composition between rabbit, rat and human platelets.


2008 ◽  
Vol 76 (10) ◽  
pp. 4686-4691 ◽  
Author(s):  
Yumiko Urano-Tashiro ◽  
Ayako Yajima ◽  
Eizo Takashima ◽  
Yukihiro Takahashi ◽  
Kiyoshi Konishi

ABSTRACTInfective endocarditis is frequently attributed to oral streptococci. The mechanisms of pathogenesis, however, are not well understood, although interaction between streptococci and phagocytes are thought to be very important. A highly expressed surface component ofStreptococcus gordonii, Hsa, which has sialic acid-binding activity, contributes to infective endocarditis in vivo. In the present study, we found thatS. gordoniiDL1 binds to HL-60 cells differentiated into monocytes, granulocytes, and macrophages. Using a glutathioneS-transferase (GST) fusion to the NR2 domain, which is the sialic acid-binding region of Hsa, we confirmed that the Hsa NR2 domain also binds to differentiated HL-60 cells. To identify which sialoglycoproteins on the surface of differentiated HL-60 cells are receptors for Hsa, intrinsic membrane proteins were assessed by bacterial overlay and far-Western blotting.S. gordoniiDL1 adhered to 100- to 150-kDa proteins, a reaction that was abolished by neuraminidase treatment. These sialoglycoproteins were identified as CD11b, CD43, and CD50 by GST pull-down assay and immunoprecipitation with each specific monoclonal antibody. These data suggest thatS. gordoniiDL1 Hsa specifically binds to three glycoproteins as receptors and that this interaction may be the initial bacterial binding step in infective endocarditis by oral streptococci.


1991 ◽  
Vol 280 (1) ◽  
pp. 179-185 ◽  
Author(s):  
S Oda-Tamai ◽  
S Kato ◽  
N Akamatsu

Glycoproteins containing N-linked oligosaccharides were prepared from plasma and liver microsomes of rats aged 0-5 weeks, and galactose and sialic acid content were determined. The sialic acid/galactose ratios in plasma membrane N-glycans remained at about 1 throughout the postnatal period, suggesting that most of the galactose residues are sialylated. In the same way, it was suggested that most of the galactose residues of microsomal N-glycans were sialylated at 0, 4 and 5 weeks of age, but that the degree of sialylation was lower at the other ages, with a minimum at 2 weeks. When the activities of sialyltransferase and galactosyltransferase in liver Golgi membranes were determined, age-dependent changes were found, not only in the specific activities of the enzymes, but also in the Golgi membrane content per g of liver. The activity of galactosyltransferase per g of liver increased immediately after birth, whereas that of sialyltransferase remained at a low level for 2 weeks and then increased to a constant level at 4 weeks. It is probable that this delayed increase in the activity of sialyltransferase results in the decreased sialylation of microsomal N-glycans at 1, 2 and 3 weeks. Sialyltransferase was solubilized from the liver microsomes of rats aged 2, 3 and 4 weeks and characterized. Phosphocellulose column chromatography separated the activity into two subfractions, designated transferase I and transferase II in the order of elution. The increase in total sialyltransferase activity during this period was caused mainly by an increase in transferase I. Rechromatography of each transferase from 3-week-old rats after neuraminidase treatment showed that transferase I but not transferase II contained sialic acid residue(s) and that desialylated transferase I was eluted in a similar way as transferase II. Although the apparent Km value for CMP-N-acetylneuraminic acid and the heat stability of transferase I were different from those of transferase II, the difference was abolished by treating transferase I with neuraminidase, suggesting that transferase II may be a desialylated form of transferase I. These changes in the sialylation of membrane glycoproteins, including sialyltransferase, may be related to the control of liver growth during postnatal development.


1979 ◽  
Author(s):  
J.L. McGregor ◽  
K.J. Clemetson ◽  
E. James ◽  
M. Dechavanne

The surface membrane glycoproteins of glanzmann’s thrombasthenia and normal whole platelets were labelled by techniques specific for either sugar or protein moieties. The labelled platelets were solubilized and electrophoresed in reduced or unreduced state by discontinuous SDS-polyacrylamide gel electrophoresis. Galactose oxidase + NaB3H4, labelling, showed with reduced samples 4 glycoprotein bands : a high M.W. glycoprotein and GP Ia, GP Ib, GP IIIb, more intensely labelled than with control platelets but with similar M.W. After treatment with neuraminidase + galactose oxidase + NaB3H4 to remove terminal sialic acid and label penultimate galactose residues the gels showed on both unreduced and reduced samples the absence of PG IIb and IIIa and a relatively broad and intensely labelled GPIb band compared with control platelets. The use of sodium periodate + NaB3H4, to label predominantly sialic acid moieties gave essentially the same number of GP bands in both reduced and unreduced samples as in normal platelets. Lactoperoxidase iodination showed in thrombasthenic platelets both in the reduced and unreduced states the absence of GPIIb, GPIIIa and more intensely labelled GPIb and CPIIIb than with control platelets. The combination of multilabelling and discontinuous Polyacrylamide gel system provides a reliable method for investigating the platelet surface.


2011 ◽  
Vol 7 (5) ◽  
pp. 443-447 ◽  
Author(s):  
Leyla Koc Ozturk ◽  
Ebru Emekli-Alturfan ◽  
Emel Kasikci ◽  
Gokhan Demir ◽  
Aysen Yarat

Genetics ◽  
1998 ◽  
Vol 148 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Jacek Majewski ◽  
Frederick M Cohan

AbstractIn Bacillus transformation, sexual isolation is known to be an exponential function of the sequence divergence between donor and recipient. Here, we have investigated the mechanism under which sequence divergence results in sexual isolation. We tested the effect of mismatch repair by comparing a wild-type strain and an isogenic mismatch-repair mutant for the relationship between sexual isolation and sequence divergence. Mismatch repair was shown to contribute to sexual isolation but was responsible for only a small fraction of the sexual isolation observed. Another possible mechanism of sexual isolation is that more divergent recipient and donor DNA strands have greater difficulty forming a heteroduplex because a region of perfect identity between donor and recipient is required for initiation of the heteroduplex. A mathematical model showed that this heteroduplex-resistance mechanism yields an exponential relationship between sexual isolation and sequence divergence. Moreover, this model yields an estimate of the size of the region of perfect identity that is comparable to independent estimates for Escherichia coli. For these reasons, and because all other mechanisms of sexual isolation may be ruled out, we conclude that resistance to heteroduplex formation is predominantly responsible for the exponential relationship between sexual isolation and sequence divergence in Bacillus transformation.


Sign in / Sign up

Export Citation Format

Share Document