scholarly journals A murine antiglycoprotein Ib complex monoclonal antibody, SZ 2, inhibits platelet aggregation induced by both ristocetin and collagen

Blood ◽  
1987 ◽  
Vol 69 (2) ◽  
pp. 570-577 ◽  
Author(s):  
CG Ruan ◽  
XP Du ◽  
XD Xi ◽  
PA Castaldi ◽  
MC Berndt

A new monoclonal antibody (MoAb), SZ 2, reactive with the human platelet glycoprotein Ib complex has been produced by the hybridoma technique. SZ 2 immunoprecipitated the components of the glycoprotein Ib complex, glycoprotein Ib and glycoprotein IX, from Triton-X-100- solubilized, periodate-labeled platelets. Western blot analysis indicated that the epitope for SZ 2 was on the alpha-subunit of glycoprotein Ib. Scatchard analysis of SZ 2 binding to formaldehyde- fixed, washed platelets revealed a single class of binding sites with Kd = 6.6 +/- 3.3 X 10(-10) mol/L and 15,200 +/- 4,100 binding sites per platelet (mean +/- SD, n = 10). Intact antibody and its purified (Fab')2 fragments not only inhibited the ristocetin-dependent binding of von Willebrand factor to platelets and ristocetin-induced platelet agglutination but also inhibited platelet aggregation induced by Type I collagen and platelet-activating factor (PAF). SZ 2 inhibited platelet serotonin and beta-thromboglobulin release in response to these stimuli and also platelet thromboxane A2 formation in response to ristocetin and collagen. SZ 2 was without effect on platelet aggregation or release in response to other platelet stimuli such as ADP, thrombin, or arachidonic acid. The inhibition by SZ 2 of collagen- and PAF-induced platelet aggregation is surprising in that Bernard-Soulier syndrome platelets, which lack the glycoprotein Ib complex, respond normally to both these stimuli. SZ 2 was unreactive toward Bernard-Soulier syndrome platelets, as evaluated by fluorescence-associated cell sorting, and had no effect on the collagen- and PAF-induced aggregation of Bernard- Soulier syndrome platelets. The combined results suggest that the inhibition by SZ 2 of collagen- and PAF-induced aggregation of normal platelets is steric and are consistent with the glycoprotein Ib complex and the platelet collagen and PAF receptor(s) being adjacent in the human platelet plasma membrane.

Blood ◽  
1987 ◽  
Vol 69 (2) ◽  
pp. 570-577 ◽  
Author(s):  
CG Ruan ◽  
XP Du ◽  
XD Xi ◽  
PA Castaldi ◽  
MC Berndt

Abstract A new monoclonal antibody (MoAb), SZ 2, reactive with the human platelet glycoprotein Ib complex has been produced by the hybridoma technique. SZ 2 immunoprecipitated the components of the glycoprotein Ib complex, glycoprotein Ib and glycoprotein IX, from Triton-X-100- solubilized, periodate-labeled platelets. Western blot analysis indicated that the epitope for SZ 2 was on the alpha-subunit of glycoprotein Ib. Scatchard analysis of SZ 2 binding to formaldehyde- fixed, washed platelets revealed a single class of binding sites with Kd = 6.6 +/- 3.3 X 10(-10) mol/L and 15,200 +/- 4,100 binding sites per platelet (mean +/- SD, n = 10). Intact antibody and its purified (Fab')2 fragments not only inhibited the ristocetin-dependent binding of von Willebrand factor to platelets and ristocetin-induced platelet agglutination but also inhibited platelet aggregation induced by Type I collagen and platelet-activating factor (PAF). SZ 2 inhibited platelet serotonin and beta-thromboglobulin release in response to these stimuli and also platelet thromboxane A2 formation in response to ristocetin and collagen. SZ 2 was without effect on platelet aggregation or release in response to other platelet stimuli such as ADP, thrombin, or arachidonic acid. The inhibition by SZ 2 of collagen- and PAF-induced platelet aggregation is surprising in that Bernard-Soulier syndrome platelets, which lack the glycoprotein Ib complex, respond normally to both these stimuli. SZ 2 was unreactive toward Bernard-Soulier syndrome platelets, as evaluated by fluorescence-associated cell sorting, and had no effect on the collagen- and PAF-induced aggregation of Bernard- Soulier syndrome platelets. The combined results suggest that the inhibition by SZ 2 of collagen- and PAF-induced aggregation of normal platelets is steric and are consistent with the glycoprotein Ib complex and the platelet collagen and PAF receptor(s) being adjacent in the human platelet plasma membrane.


1981 ◽  
Author(s):  
C Ruan ◽  
G Tobelem ◽  
A McMichael ◽  
L Drouet ◽  
Y Legrand ◽  
...  

A monoclonal antibody (AN51) to human platelet glycoprotein I (GPI) secreted by a hybrid myeloma has been tested on platelet functions. AN51 bound to normal and thrombasthenic platelets while it failed to bind to platelets from 6 patients with Bernard-Soulier syndrome (BSS). The nature of the antigen recognized by AN51 was determined by demonstration that the antigen, which was chymotrypsin sensitive, gave a peak at 150,000 daltons on SDS-PAGE after immunoprecipitation. AN51 strongly inhibited Ristocetin, bovine factor VIII or porcine factor VIII induced aggregation but did not modify ADP, collagen type I or type III, thrombin or arachidonic acid induced aggregations. Furthermore the adhesion-aggregation of platelet induced by microfibrils was also inhibited by the antibody AN51. Platelet adhesion to untreated or collagenase treated rabbit aorta subendothelium, using the Baumgartner technique, was impaired by AN51, and the inhibition was more pronouced at high shear rate conditions. AN51 decreased the binding of 125I-factor VIII/Willebrand factor (FVIII/WF) to human platelets in presence of Ristocetin. The use of this monoclonal antibody directed against platelet GPI permits a better understanding of the platelet-platelet and platelet-subendothelium interactions mediated by FVIII/WF and will facilitate the purification of the platelet membrane glycoprotein lacking in BSS which may be the receptor for FVIII/WF.


1996 ◽  
Vol 75 (04) ◽  
pp. 655-660 ◽  
Author(s):  
Mario Mazzucato ◽  
Luigi De Marco ◽  
Paola Pradella ◽  
Adriana Masotti ◽  
Francesco I Pareti

SummaryPorcine von Willebrand factor (P-vWF) binds to human platelet glycoprotein (GP) lb and, upon stirring (1500 rpm/min) at 37° C, induces, in a dose-dependent manner, a transmembrane flux of Ca2+ ions and platelet aggregation with an increase in their intracellular concentration. The inhibition of P-vWF binding to GP lb, obtained with anti GP lb monoclonal antibody (LJ-Ib1), inhibits the increase of intracellular Ca2+ concentration ([Ca2+]i) and platelet aggregation. This effect is not observed with LJ-Ib10, an anti GP lb monoclonal antibody which does not inhibit the vWF binding to GP lb. An anti GP Ilb-IIIa monoclonal antibody (LJ-CP8) shown to inhibit the binding of both vWF and fibrinogen to the GP IIb-IIIa complex, had only a slight effect on the [Ca2+]i rise elicited by the addition of P-vWF. No inhibition was also observed with a different anti GP IIb-IIIa monoclonal antibody (LJ-P5), shown to block the binding of vWF and not that of fibrinogen to the GP IIb-IIIa complex. PGE1, apyrase and indomethacin show a minimal effect on [Ca2+]i rise, while EGTA completely blocks it. The GP lb occupancy by recombinant vWF fragment rvWF445-733 completely inhibits the increase of [Ca2+]i and large aggregates formation. Our results suggest that, in analogy to what is seen with human vWF under high shear stress, the binding of P-vWF to platelet GP lb, at low shear stress and through the formation of aggregates of an appropriate size, induces a transmembrane flux of Ca2+, independently from platelet cyclooxy-genase metabolism, perhaps through a receptor dependent calcium channel. The increase in [Ca2+]i may act as an intracellular message and cause the activation of the GP IIb-IIIa complex.


1991 ◽  
Vol 274 (2) ◽  
pp. 457-463 ◽  
Author(s):  
J J Calvete ◽  
J Arias ◽  
M V Alvarez ◽  
M M Lopez ◽  
A Henschen ◽  
...  

The precise localization of the epitopes for six monoclonal antibodies specific for the N-terminal region of human platelet glycoprotein IIIa (GPIIIa) was determined. The epitope for P37, a monoclonal antibody that inhibits platelet aggregation, was found at GPIIIa 101-109, flanked by the epitopes for P23-3 (GPIIIa 16-28), P23-4 (GPIIIa 83-91), P23-5 (GPIIIa 67-73), P23-7 (GPIIIa 114-122) and P40 (GPIIIa 262-302), and very close to the early chymotryptic cleavage site of GPIIIa in whole platelets (Phe-100). When the amino acid sequence of GPIIIa was searched for peptide sequences hydropathically complementary to the fibrinogen gamma-chain C-terminal (gamma 400-411) and A alpha-chain RGD-containing peptides, none was found for the gamma 400-411, two (GPIIIa 128-132 and 380-384) were found complementary to fibrinogen A alpha 571-575 and two (GPIIIa 109-113 and 129-133) were found for A alpha 94-99. Two of these putative fibrinogen-binding sites overlap with each other, and a third one overlaps with the epitope for P37. These findings reinforce the earlier suggestion that the N-terminal region of GPIIIa is involved in fibrinogen binding, and suggest the existence in GPIIIa of either multiple or alternative RGD-binding sites or one RGD-binding domain with several moieties. Finally, early chymotryptic cleavage of GPIIIa in whole platelets liberates to the soluble fraction the peptide stretch Ser-101-Tyr-348, which carries the epitope for P37 and the putative binding sites for fibrinogen. The rest of the molecule, together with the GPIIb-resistant moiety, remains membrane-bound. This leads us to propose that the fibrinogen-binding domain of GPIIIa is not involved in the binding to GPIIb to form the Ca2(+)-dependent GPIIb-GPIIIa complex.


Blood ◽  
1987 ◽  
Vol 69 (3) ◽  
pp. 924-928 ◽  
Author(s):  
JG Kelton ◽  
JC Moore ◽  
WG Murphy

Many patients with thrombotic thrombocytopenic purpura (TTP) have a platelet aggregating factor in their serum that may be pathologically linked with the disease process. To help characterize the type of platelet aggregation and platelet release induced by the sera from seven TTP patients, we measured the ability of a variety of inhibitors of platelet function as well as the ability of monoclonal antibodies (MoAbs) against platelet glycoproteins to inhibit TTP sera-induced platelet aggregation and release. These results were compared with the ability of the same inhibitors to block platelet aggregation induced by ristocetin, collagen, ADP, thrombin, and IgG-immune complexes. Monoclonal antibody directed against platelet glycoprotein Ib totally inhibited ristocetin-induced aggregation and release but had no effect on aggregation and release induced by the TTP sera or by any of the other platelet agonists. However, the MoAb against glycoproteins IIb/IIIa inhibited aggregation and release caused by TTP sera as well as by collagen, thrombin, and ADP but had no effect on aggregation and release induced by ristocetin. The aggregating activity could be abolished by heparin but not by the serine protease inhibitor PMSF (1 mmol/L). And although monomeric human IgG and purified Fc fragments of IgG inhibited IgG-immune complex-induced aggregation and release, they had no effect on TTP sera-induced aggregation and release nor on aggregation and release induced by any of the other agonists. Consistent with these in vitro studies showing no effect of IgG were the in vivo observations that intravenous (IV) IgG was without effect when administered to three patients with TTP. This study indicates that although a von Willebrand factor (vWF)-rich preparation of cryoprecipitate enhances the in vitro platelet aggregation and release caused by sera from the seven TTP patients we studied, the pathway of aggregation and release is not via platelet glycoprotein Ib. Also the aggregating factor of TTP sera is not neutralized in vitro or in vivo by IgG.


Blood ◽  
1987 ◽  
Vol 69 (3) ◽  
pp. 924-928 ◽  
Author(s):  
JG Kelton ◽  
JC Moore ◽  
WG Murphy

Abstract Many patients with thrombotic thrombocytopenic purpura (TTP) have a platelet aggregating factor in their serum that may be pathologically linked with the disease process. To help characterize the type of platelet aggregation and platelet release induced by the sera from seven TTP patients, we measured the ability of a variety of inhibitors of platelet function as well as the ability of monoclonal antibodies (MoAbs) against platelet glycoproteins to inhibit TTP sera-induced platelet aggregation and release. These results were compared with the ability of the same inhibitors to block platelet aggregation induced by ristocetin, collagen, ADP, thrombin, and IgG-immune complexes. Monoclonal antibody directed against platelet glycoprotein Ib totally inhibited ristocetin-induced aggregation and release but had no effect on aggregation and release induced by the TTP sera or by any of the other platelet agonists. However, the MoAb against glycoproteins IIb/IIIa inhibited aggregation and release caused by TTP sera as well as by collagen, thrombin, and ADP but had no effect on aggregation and release induced by ristocetin. The aggregating activity could be abolished by heparin but not by the serine protease inhibitor PMSF (1 mmol/L). And although monomeric human IgG and purified Fc fragments of IgG inhibited IgG-immune complex-induced aggregation and release, they had no effect on TTP sera-induced aggregation and release nor on aggregation and release induced by any of the other agonists. Consistent with these in vitro studies showing no effect of IgG were the in vivo observations that intravenous (IV) IgG was without effect when administered to three patients with TTP. This study indicates that although a von Willebrand factor (vWF)-rich preparation of cryoprecipitate enhances the in vitro platelet aggregation and release caused by sera from the seven TTP patients we studied, the pathway of aggregation and release is not via platelet glycoprotein Ib. Also the aggregating factor of TTP sera is not neutralized in vitro or in vivo by IgG.


Blood ◽  
1986 ◽  
Vol 68 (2) ◽  
pp. 463-471 ◽  
Author(s):  
EI Peerschke

Abstract Tertiary amine local anesthetics modify a variety of platelet membrane- related functions. The present study explored dibucaine (DB)-induced inhibition of platelet cohesion by examining structural and functional alterations of the human platelet membrane glycoprotein IIb-IIIa complex (GPIIb-IIIa) and platelet Ca2+ homeostasis. Complete inhibition of ADP-induced aggregation was achieved five minutes after platelet exposure to 0.10 to 0.25 mmol/L of DB when fibrinogen binding was reduced by 50%. At higher concentrations of DB (approximately 1 mmol/L), ADP-induced fibrinogen binding was completely blocked. Scatchard analysis revealed loss of high-affinity binding sites in addition to reduction in Bmax. In contrast, chymotrypsin-treated platelets sustained 50% inhibition of fibrinogen binding when incubated with 0.4 to 0.5 mmol/L DB, and kinetic analysis showed that the high- affinity platelet-fibrinogen interactions were reduced but not absent. Fibrinogen binding to chymotrypsin-treated platelets could not be completely inhibited even at high DB concentrations (1 mmol/L). The inhibition of fibrinogen binding to chymotrypsin-treated platelets correlated with changes in binding of a monoclonal antibody (10E5) specific for an epitope on the GPIIb-IIIa complex. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and radioelectroimmunoassay of DB-treated platelets, however, showed no evidence of a reduction or degradation of GP IIb or IIIa. Platelet incubation with DB (five minutes, 0.1 to 1.0 mmol/L) was also accompanied by: increased platelet membrane-associated Ca2+ involving low-affinity binding sites [Kd = 5 X 10(-5) mol/L-]; increased 45Ca2+ uptake which correlated with degradation of actin-binding protein (ABP) and digestion of GPIb as visualized on periodic-acid Schiff (PAS)- stained SDS gels and as inferred from decreased binding of a monoclonal antibody (6D1) directed against this glycoprotein; and enhanced Ca2+ exchange. Thus, exposure of platelets to DB results in membrane-related alterations that may contribute to inhibition of platelet cohesion: Decreased fibrinogen receptor exposure by traditional agonists and diminished accessibility of the GPIIb-IIIa complex to extracellular ligands correlate with DB-induced inhibition of platelet aggregation; and increased calcium uptake and exchange across the platelet membrane likely leads to activation of the calcium-dependent protease(s) which was previously shown to correlate with DB-induced inhibition of ristocetin-induced platelet agglutination.


Blood ◽  
2002 ◽  
Vol 99 (12) ◽  
pp. 4428-4433 ◽  
Author(s):  
Dermot Kenny ◽  
Patricia A. Morateck ◽  
Robert R. Montgomery

The glycoprotein Ib (GPIb) complex is composed of GPIbα covalently attached to GPIbβ and noncovalently complexed with GPIX and GPV. Patients with Bernard-Soulier syndrome demonstrate that mutations in either GPIbβ or GPIX result in an absence of platelet GPIbα. This occurs through the interaction of GPIX with GPIbβ. The precise sites of interaction of GPIbβ with GPIX are not known. To characterize the interaction of GPIbβ and GPIX, we developed an anti-GPIbβ monoclonal antibody MBC 257.4, whose epitope was in the N-terminal region of GPIbβ. N-terminal truncations of GPIbβ were expressed in mammalian cells. N-terminal truncations of GPIbβ, missing the first 14, 26, or 31 amino acids, were surface-expressed but did not enable coexpressed GPIX to be surface expressed, suggesting that the site of interaction with GPIX was modified by these deletions. GPIbβ and GPIX chimeras corresponding to predicted boundaries were used to define the sites of interaction of GPIbβ with GPIX. Replacing the N-terminal disulfide loops of GPIbβ (amino acids 1-14) with the corresponding disulfide loops of GPIX (amino acids 1-22) resulted in surface expression of coexpressed wildtype GPIX. However, when the N terminus of GPIbβ was replaced to residue 32 with the N terminus of GPIX (amino acids 1-36), GPIX did not surface express with this chimera. These results suggest that the cysteine knot region of GPIbβ in the N terminus is critical for the conformation of GPIbβ that interacts with GPIX and further suggests that a critical interaction of GPIbβ with GPIX involve residues 15 through 32 of GPIbβ.


Blood ◽  
1987 ◽  
Vol 70 (2) ◽  
pp. 428-431
Author(s):  
DV Devine ◽  
MS Currie ◽  
WF Rosse ◽  
CS Greenberg

The Bernard-Soulier syndrome is an inherited bleeding disorder that is due to a deficiency in platelet glycoprotein Ib. Bernard-Soulier platelets fail to agglutinate in response to ristocetin despite normal levels of factor VIII:von Willebrand factor. We report a patient who developed severe refractory thrombocytopenia postsurgically while receiving procainamide therapy. Thrombocytopenia was immune mediated since the patient's platelets bore high levels of antiplatelet antibody. Radioimmunoprecipitation studies demonstrated that the autoantibodies had specificity for platelet glycoproteins Ib and V as well as platelet HLA. The patient's plasma as well as purified immunoglobulin G completely inhibited the ristocetin-induced aggregation of normal platelets but did not inhibit adenosine diphosphate-induced aggregation. The laboratory studies revealed that this patient suffered from antibody-mediated thrombocytopenia with unusual characteristics that we have called pseudo-Bernard-Soulier syndrome.


Blood ◽  
1987 ◽  
Vol 70 (2) ◽  
pp. 428-431 ◽  
Author(s):  
DV Devine ◽  
MS Currie ◽  
WF Rosse ◽  
CS Greenberg

Abstract The Bernard-Soulier syndrome is an inherited bleeding disorder that is due to a deficiency in platelet glycoprotein Ib. Bernard-Soulier platelets fail to agglutinate in response to ristocetin despite normal levels of factor VIII:von Willebrand factor. We report a patient who developed severe refractory thrombocytopenia postsurgically while receiving procainamide therapy. Thrombocytopenia was immune mediated since the patient's platelets bore high levels of antiplatelet antibody. Radioimmunoprecipitation studies demonstrated that the autoantibodies had specificity for platelet glycoproteins Ib and V as well as platelet HLA. The patient's plasma as well as purified immunoglobulin G completely inhibited the ristocetin-induced aggregation of normal platelets but did not inhibit adenosine diphosphate-induced aggregation. The laboratory studies revealed that this patient suffered from antibody-mediated thrombocytopenia with unusual characteristics that we have called pseudo-Bernard-Soulier syndrome.


Sign in / Sign up

Export Citation Format

Share Document