scholarly journals Plasma crosslinked fibrin polymers: quantitation based on tissue plasminogen activator conversion to D-dimer and measurement in normal and patients with acute thrombotic disorders

Blood ◽  
1992 ◽  
Vol 80 (3) ◽  
pp. 709-717
Author(s):  
A Kornberg ◽  
CW Francis ◽  
VJ Marder

Plasma crosslinked fibrin polymers (XLFP) are formed as a result of in vivo hemostatic activation and are elevated in thrombotic disease. We have investigated the plasmic degradation of plasma XLFP in vitro to provide information regarding the pattern of crosslinking and the composition of degradation products. Plasma XLFP were identified by sodium dodecyl sulfate (SDS)-agarose electrophoresis and Western blotting and quantitated by gel scanning. D-dimer was measured by enzyme-linked immunosorbent assay and the results were verified by SDS- polyacrylamide gel electrophoresis and Western blotting of the digests. Complete degradation of XLFP occurred only after supplementation of plasma with plasminogen (5 U/mL) and incubation with recombinant tissue plasminogen activator (rt-PA), indicating that the normal plasma plasminogen concentration limits plasmic degradation in vitro. Gel electrophoresis showed that the principal terminal degradation products of XLDP were fragments D, DD, and E, indicating that crosslinking occurred primarily through gamma chain dimers. After adding a low concentration of thrombin to plasma in vitro, XLFP increased progressively before clotting, and the concentration correlated with the increase in the D-dimer concentration after degradation (r = .98). Plasma XLFP and D-dimer concentrations in plasmic digests were significantly elevated in patients with stroke (150 +/- 83 micrograms/mL and 88 +/- 32 micrograms/mL), myocardial infarction (217 +/- 110 micrograms/mL and 84 +/- 30 micrograms/mL), and venous thrombosis (187 +/- 80 micrograms/mL and 86 +/- 19 micrograms/mL) compared with normals (28 +/- 12 micrograms/mL and 25 +/- 7 micrograms/mL). There was a strong correlation between the plasma concentration of XLFP and the D-dimer immunoreactivity of plasma after plasmic degradation (r = .87). The results indicate that XLFP in plasma are crosslinked primarily through gamma chains and degrade to fragment DD with plasminogen activation. Also, the immunoreactivity of in vitro plasmic digests of plasma reflects the concentration of XLFP and may provide a useful indirect measure of in vivo hemostatic activation in patients with thrombotic disease.

Blood ◽  
1992 ◽  
Vol 80 (3) ◽  
pp. 709-717 ◽  
Author(s):  
A Kornberg ◽  
CW Francis ◽  
VJ Marder

Abstract Plasma crosslinked fibrin polymers (XLFP) are formed as a result of in vivo hemostatic activation and are elevated in thrombotic disease. We have investigated the plasmic degradation of plasma XLFP in vitro to provide information regarding the pattern of crosslinking and the composition of degradation products. Plasma XLFP were identified by sodium dodecyl sulfate (SDS)-agarose electrophoresis and Western blotting and quantitated by gel scanning. D-dimer was measured by enzyme-linked immunosorbent assay and the results were verified by SDS- polyacrylamide gel electrophoresis and Western blotting of the digests. Complete degradation of XLFP occurred only after supplementation of plasma with plasminogen (5 U/mL) and incubation with recombinant tissue plasminogen activator (rt-PA), indicating that the normal plasma plasminogen concentration limits plasmic degradation in vitro. Gel electrophoresis showed that the principal terminal degradation products of XLDP were fragments D, DD, and E, indicating that crosslinking occurred primarily through gamma chain dimers. After adding a low concentration of thrombin to plasma in vitro, XLFP increased progressively before clotting, and the concentration correlated with the increase in the D-dimer concentration after degradation (r = .98). Plasma XLFP and D-dimer concentrations in plasmic digests were significantly elevated in patients with stroke (150 +/- 83 micrograms/mL and 88 +/- 32 micrograms/mL), myocardial infarction (217 +/- 110 micrograms/mL and 84 +/- 30 micrograms/mL), and venous thrombosis (187 +/- 80 micrograms/mL and 86 +/- 19 micrograms/mL) compared with normals (28 +/- 12 micrograms/mL and 25 +/- 7 micrograms/mL). There was a strong correlation between the plasma concentration of XLFP and the D-dimer immunoreactivity of plasma after plasmic degradation (r = .87). The results indicate that XLFP in plasma are crosslinked primarily through gamma chains and degrade to fragment DD with plasminogen activation. Also, the immunoreactivity of in vitro plasmic digests of plasma reflects the concentration of XLFP and may provide a useful indirect measure of in vivo hemostatic activation in patients with thrombotic disease.


1992 ◽  
Vol 1 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Toshiaki Iba ◽  
Bauer E. Sumpio

The effects of cyclic strain on the production of tissue plasminogen activator (tPA) and type 1 plasminogen activator inhibitor (PAI-1) by cultured endothelial cells (EC) were examined. Human saphenous vein EC were seeded in selective areas of culture plates with flexible membrane bottoms (corresponding to specific strain regions) and grown to confluence. Membranes were deformed by vacuum (-20 kPa) at 60 cycles/min (0.5 s strain alternating with 0.5 s relaxation in the neutral position) for 5 days. EC grown in the periphery were subjected to 7-24% strain, while cells grown in the center experienced less than 7% strain. The results show a significant increase in immunoreactive tPA production on days 1, 3 and 5 compared to day 0 in EC subjected to more than 7% cyclic strain. There was no significant elevation of tPA in the medium of EC subjected to less than 7% strain. tPA activity could only be detected in the medium of EC subjected to more than 7% cyclic strain. PAI-1 levels in the medium were not significantly different in either group. In addition, immunocytochemical detection of intracellular tPA and messenger ribonucleic acid (mRNA) expression of tPA (assessed by the reverse transcriptase polymerase chain reaction utilizing tPA specific sense and antisense primers) was significantly increased in EC subjected to more than 7% cyclic strain. We conclude that a 60 cycles/min regimen of strain that is greater than 7% can selectively stimulate tPA production by EC in vitro and may contribute to the relative nonthrombogenicity of the endothelium in vivo.


1979 ◽  
Author(s):  
A.N. Whitaker ◽  
E.A. Rowe ◽  
P.P. Masci ◽  
P.J. Gaffney

D-dimer (D2), a product of the plasmin lysis of cross-linked (XL) fibrin, but not of non-XL fibrin or fibrinogen, has been identified in the plasma of patients with DIC due to amniotic fluid embolism. In vitro, D is involved with fragment E as a stable complex (D2-E) but D2 -E has not been identified in vivo before. Fibrin degradation products (FDP) were studied in a patient having fulminant postsplenectomy pneumococcal sepsis and DIC, by immunoprecipitation with anti-fibrinogen (f) and anti-fragment E and characterization by SDS polyacrylamide gel electrophoresis (PAGE). With both antisera soluble HMW fibrin complexes, D2 and E but no X, Y or D were obtained from serum. D2 and E were identified in the supernatant after removing partially XL HMW complexes and fibrinogen from plasma with 2.5 M β-alanine. The presence D antigen in the D2-E complex precipitated by monospecific anti-E was confirmed by crossed Ag-Ab electrophoresis. Crossed Ag-Ab electrophoresis of serum in agarose gave E peaks of slow mobility and no fast-moving free E was found. Thus, D2-E complex exists in vivo and its easy identification, proving the lysis of XL fibrin, would be of value in studying thrombosis. D2-E complex has been identified in other patients with sepsis but at lower concentrations than described above.


2015 ◽  
Vol 82 (1) ◽  
pp. 394-401 ◽  
Author(s):  
Jakub Kwiecinski ◽  
Manli Na ◽  
Anders Jarneborn ◽  
Gunnar Jacobsson ◽  
Marijke Peetermans ◽  
...  

ABSTRACTStaphylococcus aureusbiofilm infections of indwelling medical devices are a major medical challenge because of their high prevalence and antibiotic resistance. As fibrin plays an important role inS. aureusbiofilm formation, we hypothesize that coating of the implant surface with fibrinolytic agents can be used as a new method of antibiofilm prophylaxis. The effect of tissue plasminogen activator (tPA) coating onS. aureusbiofilm formation was tested within vitromicroplate biofilm assays and anin vivomouse model of biofilm infection. tPA coating efficiently inhibited biofilm formation by variousS. aureusstrains. The effect was dependent on plasminogen activation by tPA, leading to subsequent local fibrin cleavage. A tPA coating on implant surfaces prevented both early adhesion and later biomass accumulation. Furthermore, tPA coating increased the susceptibility of biofilm infections to antibiotics.In vivo, significantly fewer bacteria were detected on the surfaces of implants coated with tPA than on control implants from mice treated with cloxacillin. Fibrinolytic coatings (e.g., with tPA) reduceS. aureusbiofilm formation bothin vitroandin vivo, suggesting a novel way to prevent bacterial biofilm infections of indwelling medical devices.


2006 ◽  
Vol 105 (3) ◽  
pp. 424-429 ◽  
Author(s):  
Quoc-Anh Thai ◽  
Gustavo Pradilla ◽  
Federico G. Legnani ◽  
Ryan M. Kretzer ◽  
Wesley Hsu ◽  
...  

Object Currently no adequate surgical treatment exists for spontaneous intracerebral hemorrhage (ICH). Implantable polymers can be used effectively to deliver therapeutic agents to the local site of the pathological process, thus reducing adverse systemic effects. The authors report the use of stereotactically implanted polymers loaded with tissue plasminogen activator (tPA) to induce lysis of ICH in a rabbit model. Methods Ethylene vinyl acetate (EVAc) polymers were loaded with bovine serum albumin (BSA) only or with BSA plus tPA. In vitro pharmacokinetic (three polymers) and thrombolysis (12 polymers) studies were performed. For the in vivo study, 12 rabbits were fixed in a stereotactic frame, and 0.2 ml of clotted autologous blood was injected into the right frontal lobe parenchyma. After 20 minutes, control BSA polymers were stereotactically implanted at the hemorrhage site in six rabbits, and experimental BSA plus tPA polymers were implanted in six rabbits. Animals were killed at 3 days, and blood clot volume was assessed. The pharmacokinetic study showed release of 146 ng of tPA over 3 days. The tPA activity correlated with in vitro thrombolysis. In the in vivo study, the six animals treated with tPA polymers had a mean (± standard error of the mean [SEM]) thrombus volume of 1.43 ± 0.29 mm3 at 3 days, whereas the six animals treated with blank (BSA-only) polymers had a mean (± SEM) thrombus volume of 19.99 ± 3.74 mm3 (p < 0.001). Conclusions Ethylene vinyl acetate polymers release tPA over the course of 3 days. Stereotactic implantation of tPA-loaded EVAc polymers significantly reduced ICH volume. Polymers loaded with tPA may be useful clinically for lysis of ICH without the side effects of systemic administration of tPA.


1996 ◽  
Vol 76 (02) ◽  
pp. 177-183 ◽  
Author(s):  
Francesco Violi ◽  
Stefania Basili ◽  
Domenico Ferro ◽  
Claudio Quintarelli ◽  
Cesare Alessandri ◽  
...  

SummaryCirrhotic patients with decompensated state and high serum levels of fibrin(ogen) degradation products are at high risk of bleeding. The aim of this study was to further analyse the relationship between hyperfibrinolysis and bleeding in cirrhosis by measuring plasma values of D-dimer and tissue plasminogen activator (t-PA) activity. One-hundred-twelve cirrhotic patients with oesophageal varices and without previous upper-gastrointestinal bleeding entered the study and were followed-up for 3 years. Patients were considered to have hyperfibrinolysis if they concomitantly had high values of D-dimer and t-PA activity. During the follow-up 34 (30%) patients bled. They had more severe liver failure (p = 0.0001) and variceal size (p = 0.0031) and higher prevalence of ascites (p = 0.0003), varices with red signs and hyperfibrinolysis (p = 0.0001) than patients who did not bleed. Multivariate analysis disclosed hyperfibrinolysis as the only marker predictive of bleeding (Hazard Ratio = 42.5, p <0.001). Our findings suggest that screening for hyperfibrinolysis may be useful to identify cirrhotic patients at risk of bleeding.


2019 ◽  
Vol 31 (3) ◽  
pp. 433 ◽  
Author(s):  
Francisco A. García-Vázquez ◽  
C. Soriano-Úbeda ◽  
R. Laguna-Barraza ◽  
M José Izquierdo-Rico ◽  
Felipe A. Navarrete ◽  
...  

Besides its fibrinolytic function, the plasminogen–plasmin (PLG–PLA) system is also involved in fertilisation, where plasminogen activators bind to plasminogen to produce plasmin, which modulates sperm binding to the zona pellucida. However, controversy exists, depending on the species, concerning the role of the different components of the system. This study focused its attention on the role of the PLG–PLA system on fertilisation in the mouse with special attention to tissue plasminogen activator (tPA). The presence of exogenous plasminogen reduced invitro fertilisation (IVF) rates and this decline was attenuated by the presence of plasmin inhibitors in combination with plasminogen. The incubation of spermatozoa with either oocytes or cumulus cells together with plasminogen did not change the acrosome reaction but reduced the number of spermatozoa attached. When spermatozoa from tPA−/− mice were used, the IVF rate decreased drastically, although the addition of exogenous tPA during gamete co-incubation under invitro conditions increased fertilisation success. Moreover, fertility could not be restored after invivo insemination of tPA−/− spermatozoa in the female ampulla, although tPA−/− males were able to fertilise invivo. This study suggests a regulatory role of the PLG–PLA system during fertilisation in the mouse with possible implications in human reproduction clinics, such as failures in tPA production, which could be partially resolved by the addition of exogenous tPA during IVF treatment.


1987 ◽  
Author(s):  
Jessie T Douglas ◽  
G D O Lowe ◽  
R Balendra ◽  
C D Forbes ◽  
L J Creighton ◽  
...  

Acute stroke is normally the result of thromboembolism. Such thromboemboli form and extend by the interaction of platelets and fibrin and elicit a fibrinolytic response. Hence laboratory indices of platelet activation, thrombin formation and plasmin formation may be related to thrombus size and progression, and hence to clinical outcome, ie disability and death. We studied 100 patients with acute paretic stroke and followed them for 1 year. Plasma levels of betathromboglobulin (BTG), fibrinogen, fibrinopeptide A (FPA), fibrin(ogen) fragment BB15-42, serum fragment E, high molecular weight cross-linked fibrin degradation products (X-L FDP) D-dimer, total and tissue plasminogen activator activity, tissue plasminogen activator inhibition and serum fibrin(ogen) degradation products (FDP) were related to death and functional recovery in the 1 year follow up period. The levels of BTG, fibrinogen, FPA, BB15-42, tissue plasminogen activator inhibition and serum fragment E were significantly higher on the first day following stroke, in patients who subsequently died within 1 year when compared to patients who survived. Lowered levels of fibrin plate lysis area as well as raised tPA activity, X-L FDP and D-dimer levels did not achieve significance in patients who subsequently died. In the patients who survived only increased BB15-42 and X-L FDP levels were predictive of functional dependence when compared to patients who became independent. Increased fibrinogen, FPA and fibrin plate lysis area, fragment E and tPA activity and reduced D-dimer did not achieve significance in patients with greater disability when compared to patients with minimal disability. We conclude that several measures of activation of haemostasis are predictive of death in the year following stroke, but only BB15-42 and X-L FDP predict disability in survivors.


Sign in / Sign up

Export Citation Format

Share Document