scholarly journals Platelet adhesion to collagen types I through VIII under conditions of stasis and flow is mediated by GPIa/IIa (alpha 2 beta 1-integrin)

Blood ◽  
1994 ◽  
Vol 83 (5) ◽  
pp. 1244-1250 ◽  
Author(s):  
EU Saelman ◽  
HK Nieuwenhuis ◽  
KM Hese ◽  
PG de Groot ◽  
HF Heijnen ◽  
...  

Abstract Platelet adhesion to fibrillar collagens (types I, II, III, and V) and nonfibrillar collagens (types IV, VI, VII, and VIII) was investigated in the presence of physiologic concentrations of divalent cations under conditions of stasis and flow. Under static conditions, platelet adhesion was observed to collagen types I through VII but not to type VIII. Under flow conditions, platelet adhesion to collagen types I, II, III, and IV was almost independent of shear rates above 300/s. Collagen type V was nonadhesive. Platelet adhesion to collagen type VI was shear rate-dependent and optimal at a rate of 300/s. Collagen types VII and VIII showed minor reactivity and supported platelet adhesion only between shear rates 100 to 1,000/s. Monoclonal antibody (MoAb) 176D7, directed against platelet membrane glycoprotein Ia (GPIa; very late antigen [VLA]-alpha 2 subunit), completely inhibited platelet adhesion to all collagens tested, under conditions of both stasis and flow. Platelet adhesion to collagen type III at shear rate 1,600/s was only inhibited for 85%. The concentration of antibody required for complete inhibition of platelet adhesion was dependent on the shear rate and the reactivity of the collagen. An MoAb directed against GPIIa (VLA-beta subunit) partially inhibited platelet adhesion to collagen. These results show that GPIa-IIa is a major and universal platelet receptor for eight unique types of collagen.

Blood ◽  
1994 ◽  
Vol 83 (5) ◽  
pp. 1244-1250 ◽  
Author(s):  
EU Saelman ◽  
HK Nieuwenhuis ◽  
KM Hese ◽  
PG de Groot ◽  
HF Heijnen ◽  
...  

Platelet adhesion to fibrillar collagens (types I, II, III, and V) and nonfibrillar collagens (types IV, VI, VII, and VIII) was investigated in the presence of physiologic concentrations of divalent cations under conditions of stasis and flow. Under static conditions, platelet adhesion was observed to collagen types I through VII but not to type VIII. Under flow conditions, platelet adhesion to collagen types I, II, III, and IV was almost independent of shear rates above 300/s. Collagen type V was nonadhesive. Platelet adhesion to collagen type VI was shear rate-dependent and optimal at a rate of 300/s. Collagen types VII and VIII showed minor reactivity and supported platelet adhesion only between shear rates 100 to 1,000/s. Monoclonal antibody (MoAb) 176D7, directed against platelet membrane glycoprotein Ia (GPIa; very late antigen [VLA]-alpha 2 subunit), completely inhibited platelet adhesion to all collagens tested, under conditions of both stasis and flow. Platelet adhesion to collagen type III at shear rate 1,600/s was only inhibited for 85%. The concentration of antibody required for complete inhibition of platelet adhesion was dependent on the shear rate and the reactivity of the collagen. An MoAb directed against GPIIa (VLA-beta subunit) partially inhibited platelet adhesion to collagen. These results show that GPIa-IIa is a major and universal platelet receptor for eight unique types of collagen.


Blood ◽  
1992 ◽  
Vol 80 (4) ◽  
pp. 988-994 ◽  
Author(s):  
E Fressinaud ◽  
KS Sakariassen ◽  
C Rothschild ◽  
HR Baumgartner ◽  
D Meyer

Abstract Thrombus formation on collagen fibrils was quantified at venous (100/s) and arterial (650/s and 2,600/s) wall shear rates in blood from patients with various subtypes of von Willebrand disease (vWD) and with hemophilia A (HA). Nonanticoagulated blood was drawn directly from an antecubital vein over purified type III collagen fibrils exposed in parallel-plate perfusion chambers. Blood-collagen interactions were differentiated and quantified by morphometry as platelet adhesion, thrombus height, thrombus volume, and deposition of fibrin strands. Sixteen patients with vWD, including four type III, six type I, four type IIA, and two type IIB, were compared with 26 normal subjects and nine patients with HA, including six severe HA and three mild HA. Platelet adhesion and thrombus formation at 2,600/s were significantly decreased in blood from patients with vWD type III, IIA, and IIB, but not in blood from patients with type I and in HA. The abnormal thrombus formation was apparently not related to the decreased levels of factor VIII (F.VIII), because thrombus height and volume were normal in severe and mild HA. Thrombus formation at 650/s was also significantly decreased in patients with vWD type III, IIA, and IIB and slightly reduced in type I. Significant reduction in thrombus volume and height was also observed in blood from patients with severe HA, but not in mild HA. Thrombus dimensions were not affected at 100/s in the vWD subtypes. However, significantly decreased thrombus height and virtually absent fibrin deposition were observed in blood from patients with severe HA. Apparently, F.VIII supports thrombus formation at low and intermediate shear conditions, presumably through the generation of thrombin. In contrast, von Willebrand factor (vWF) mediates not only platelet adhesion, but also thrombus formation at intermediate and high shear rates. Thus, the relative contribution of coagulation (F.VIII) and platelet function (vWF) in thrombus formation appears to be shear rate dependent, but having optimal effects at different shear conditions.


1999 ◽  
Vol 81 (01) ◽  
pp. 118-123 ◽  
Author(s):  
Carl Simon ◽  
Adrian Gear ◽  
Renata Polanowska-Grabowska

SummaryExtracellular matrix proteins in the blood vessel wall fulfill an essential role in haemostasis by promoting platelet adhesion at the site of vessel injury. We have combined a continuous-flow system with affinity chromatography to study platelet adhesion under conditions mimicking arterial flow and have examined the adhesion kinetics of unstimulated platelets to collagens type I and IV, von Willebrand factor (vWf), fibronectin, laminin and to fibrinogen. In the absence of red cells, in ACD-prepared plasma adhesion to collagens type I and IV or vWf was rapid, efficient (>50% in <1 s ) and independent of shear rates from 650 to 3400 s-1with kinetics following an inverse exponential decay curve. We introduced a simple mathematical model in which this type of kinetics arises, and which may be more generally applicable to various adhesion processes under flow conditions. The model is characterized by the rate of platelet deposition on the adhesive surface being proportional to the number of platelets in the flow. Adhesion to fibronectin was independent of shear rate, but revealed a lag phase of ~1.5 s before significant adhesion began. Laminin and fibrinogen supported efficient adhesion at low shear rates (650-1000 s-1), but a lag phase of ~1.5 s was seen at high shear rates (1700-3400 s-1). Control proteins (albumin and gelatin) supported minimal adhesion. Nonspecific adhesion to poly-l-lysine differed from that to other substrate proteins in that the kinetics were linear. In conclusion, human platelets adhered specifically, rapidly (within seconds) and efficiently to several proteins under flow conditions and the kinetics of adhesion depended on the protein serving as substrate as well as on shear rate.


Blood ◽  
1994 ◽  
Vol 83 (11) ◽  
pp. 3240-3244 ◽  
Author(s):  
EU Saelman ◽  
B Kehrel ◽  
KM Hese ◽  
PG de Groot ◽  
JJ Sixma ◽  
...  

Platelet membrane glycoprotein IV (GPIV) is a cell-surface glycoprotein that has been proposed as a receptor for collagen. Recently, it has been shown that platelets with the Naka-negative phenotype lack GPIV on their surface, whereas donors with this phenotype are healthy and do not suffer from hematologic disorders. In this study, we compared Naka- negative platelets with normal platelets in adhesion to collagen types I, III, IV, and V and the extracellular matrix of endothelial cells (ECM) under static and flow conditions. No differences in platelet adhesion and subsequent aggregate formation on the collagens types I, III, and IV were observed under static and flow conditions. Adhesion of both homozygous and heterozygous Naka-negative platelets to collagen type V was strongly reduced under static conditions. Collagen type V was not adhesive under flow conditions. No difference in platelet adhesion to ECM was observed, which suggests that GPIV is not important in adhesion to subendothelium, for which ECM may serve as a model. These results indicate that GPIV is not a functional receptor for collagen under flow conditions.


Blood ◽  
1992 ◽  
Vol 79 (4) ◽  
pp. 928-935 ◽  
Author(s):  
G Hindriks ◽  
MJ Ijsseldijk ◽  
A Sonnenberg ◽  
JJ Sixma ◽  
PG de Groot

The adhesion of platelets to purified laminin under flow conditions was investigated. Adhesion to laminin was strongly dependent on the presence of divalent cations. In the absence of cations platelet adhesion (8% coverage in 5 minutes) was maximal at a shear rate of 100/s and no adhesion could be detected at shear rates above 800/s. In the presence of 0.8 mmol/L Mg2+ and 2 mmol/L Ca2+ platelet adhesion reached its maximum (30% coverage) around 800/s. At 1,800/s platelets still adhered to purified laminin (coverage of 6%). Antibodies against the E8 domain of laminin and antibodies against the alpha 6 and beta 1 chains of platelet membrane glycoprotein very late activation antigen-6 (VLA-6), completely inhibited adhesion. No inhibition was found with antibodies against glycoprotein IIb:IIIa, against the alpha 2 chain of VLA-2, and against the alpha 5 chain of VLA-5. Fibronectin and von Willebrand factor were not involved in laminin-dependent adhesion. Anti- VLA-6 partly inhibited platelet adhesion to the extracellular matrix of endothelial cells at shear rates below 800/s. Preincubation of the matrices with antilaminin E8 antibodies did not influence the adhesion. These results show that purified laminin supports platelet adhesion and that the presence of VLA-6 is important for platelet adhesion under flow conditions. The protein in the matrix with which VLA-6 interacts is currently unknown.


Blood ◽  
1992 ◽  
Vol 80 (4) ◽  
pp. 988-994
Author(s):  
E Fressinaud ◽  
KS Sakariassen ◽  
C Rothschild ◽  
HR Baumgartner ◽  
D Meyer

Thrombus formation on collagen fibrils was quantified at venous (100/s) and arterial (650/s and 2,600/s) wall shear rates in blood from patients with various subtypes of von Willebrand disease (vWD) and with hemophilia A (HA). Nonanticoagulated blood was drawn directly from an antecubital vein over purified type III collagen fibrils exposed in parallel-plate perfusion chambers. Blood-collagen interactions were differentiated and quantified by morphometry as platelet adhesion, thrombus height, thrombus volume, and deposition of fibrin strands. Sixteen patients with vWD, including four type III, six type I, four type IIA, and two type IIB, were compared with 26 normal subjects and nine patients with HA, including six severe HA and three mild HA. Platelet adhesion and thrombus formation at 2,600/s were significantly decreased in blood from patients with vWD type III, IIA, and IIB, but not in blood from patients with type I and in HA. The abnormal thrombus formation was apparently not related to the decreased levels of factor VIII (F.VIII), because thrombus height and volume were normal in severe and mild HA. Thrombus formation at 650/s was also significantly decreased in patients with vWD type III, IIA, and IIB and slightly reduced in type I. Significant reduction in thrombus volume and height was also observed in blood from patients with severe HA, but not in mild HA. Thrombus dimensions were not affected at 100/s in the vWD subtypes. However, significantly decreased thrombus height and virtually absent fibrin deposition were observed in blood from patients with severe HA. Apparently, F.VIII supports thrombus formation at low and intermediate shear conditions, presumably through the generation of thrombin. In contrast, von Willebrand factor (vWF) mediates not only platelet adhesion, but also thrombus formation at intermediate and high shear rates. Thus, the relative contribution of coagulation (F.VIII) and platelet function (vWF) in thrombus formation appears to be shear rate dependent, but having optimal effects at different shear conditions.


Blood ◽  
1992 ◽  
Vol 79 (4) ◽  
pp. 928-935 ◽  
Author(s):  
G Hindriks ◽  
MJ Ijsseldijk ◽  
A Sonnenberg ◽  
JJ Sixma ◽  
PG de Groot

Abstract The adhesion of platelets to purified laminin under flow conditions was investigated. Adhesion to laminin was strongly dependent on the presence of divalent cations. In the absence of cations platelet adhesion (8% coverage in 5 minutes) was maximal at a shear rate of 100/s and no adhesion could be detected at shear rates above 800/s. In the presence of 0.8 mmol/L Mg2+ and 2 mmol/L Ca2+ platelet adhesion reached its maximum (30% coverage) around 800/s. At 1,800/s platelets still adhered to purified laminin (coverage of 6%). Antibodies against the E8 domain of laminin and antibodies against the alpha 6 and beta 1 chains of platelet membrane glycoprotein very late activation antigen-6 (VLA-6), completely inhibited adhesion. No inhibition was found with antibodies against glycoprotein IIb:IIIa, against the alpha 2 chain of VLA-2, and against the alpha 5 chain of VLA-5. Fibronectin and von Willebrand factor were not involved in laminin-dependent adhesion. Anti- VLA-6 partly inhibited platelet adhesion to the extracellular matrix of endothelial cells at shear rates below 800/s. Preincubation of the matrices with antilaminin E8 antibodies did not influence the adhesion. These results show that purified laminin supports platelet adhesion and that the presence of VLA-6 is important for platelet adhesion under flow conditions. The protein in the matrix with which VLA-6 interacts is currently unknown.


1990 ◽  
Vol 64 (04) ◽  
pp. 589-593 ◽  
Author(s):  
Edith Fressinaud ◽  
Jean Pierre Girma ◽  
J Evan Sadler ◽  
Hans R Baumgartner ◽  
Dominique Meyer

SummaryWe compared the effect of a synthetic dodecapeptide of residues 400-411 of the Γ chain of fibrinogen (Γ Fg 400-411) and of three synthetic peptides (15 to 18 aminoacids), of human von Willebrand Factor (vWF), containing the 1744-1747 Arg-Gly-Asp-Ser (RGDS) sequence, upon platelet adhesion to collagen in flowing blood. Both types of peptides are known to inhibit the binding of adhesive proteins to platelet membrane glycoprotein Ilb/IIIa (GPIIb/IIIa). Collagen was coated onto plastic cover slips and exposed in parallel-plate perfusion chambers to reconstituted human blood at various shear rates for 5 min at 37 °C. At a shear rate of 2,600 s−1, RGDS peptides inhibited platelet adhesion to collagen in a dose-dependent manner and appeared to be more potent inhibitors than the Γ Fg 400-411 on a molar basis. No synergetic effect between RGDS and Γ Fg 400-411 peptides was observed. These results suggest that the RGDS peptides affect adhesion by inhibiting the GPIIb/IIIa-vWF interaction and confirm the involvement of this platelet receptor in vWF-mediated platelet adhesion to collagen at high shear rate.


Blood ◽  
1994 ◽  
Vol 83 (11) ◽  
pp. 3240-3244 ◽  
Author(s):  
EU Saelman ◽  
B Kehrel ◽  
KM Hese ◽  
PG de Groot ◽  
JJ Sixma ◽  
...  

Abstract Platelet membrane glycoprotein IV (GPIV) is a cell-surface glycoprotein that has been proposed as a receptor for collagen. Recently, it has been shown that platelets with the Naka-negative phenotype lack GPIV on their surface, whereas donors with this phenotype are healthy and do not suffer from hematologic disorders. In this study, we compared Naka- negative platelets with normal platelets in adhesion to collagen types I, III, IV, and V and the extracellular matrix of endothelial cells (ECM) under static and flow conditions. No differences in platelet adhesion and subsequent aggregate formation on the collagens types I, III, and IV were observed under static and flow conditions. Adhesion of both homozygous and heterozygous Naka-negative platelets to collagen type V was strongly reduced under static conditions. Collagen type V was not adhesive under flow conditions. No difference in platelet adhesion to ECM was observed, which suggests that GPIV is not important in adhesion to subendothelium, for which ECM may serve as a model. These results indicate that GPIV is not a functional receptor for collagen under flow conditions.


1994 ◽  
Vol 71 (01) ◽  
pp. 078-090 ◽  
Author(s):  
H L Goldsmith ◽  
M M Frojmovic ◽  
Susan Braovac ◽  
Fiona McIntosh ◽  
T Wong

SummaryThe effect of shear rate and fibrinogen concentration on adenosine diphosphate-induced aggregation of suspensions of washed human platelets in Poiseuille flow at 23°C was studied using a previously described double infusion technique and resistive particle counter size analysis (1). Using suspensions of multiple-centrifuged and -washed cells in Tyrodes-albumin [3 × 105 μl−1; (17)] with [fibrinogen] from 0 to 1.2μM, the, rate and extent of aggregation with 0.7 μM ADP in Tyrodes-albumin were measured over a range of mean transit times from 0.2 to 43 s, and at mean tube shear rates, Ḡ, = 41.9, 335 and 1,335 s−1. As measured by the decrease in singlet concentration, aggregation at 1.2 μM fibrinogen increased with increasing Ḡ up to 1,335 s1, in contrast to that previously reported in citratcd plasma, in which aggregation reached a maximum at Ḡ = 335 s−1. Without added fibrinogen, there was no aggregation at Ḡ = 41.9 s1; at Ḡ = 335 s1, there was significant aggregation but with an initial lag time, aggregation increasing further at Ḡ = 1,335 s−1. Without added fibrinogen, aggregation was abolished at all Ḡ upon incubation with the hexapeptide GRGDSP, but was almost unaffected by addition of an F(ab’)2 fragment of an antibody to human fibrinogen. Aggregation in the absence of added fibrinogen was also observed at 37°C. The activation of the multiple-washed platelets was tested using flow cytometry with the fluorescently labelled monoclonal antibodies FITC-PAC1 and FITC-9F9. It was shown that 57% of single cells in unactivated PRT expressed maximal GPIIb-IIIa fibrinogen receptors (MoAb PAC1) and 54% expressed pre-bound fibrinogen (MoAb 9F9), with further increases on ADP activation. However, incubation with GRGDSP and the F(ab’)2 fragment did not inhibit the prebound fibrinogen. Moreover, relatively unactivated cells (8% expressing receptor, 14% prebound fibrinogen), prepared from acidified cPRP by single centrifugation with 50 nM of the stable prostacyclin derivative, ZK 36 374, and resuspension in Tyrodes-albumin at 5 × 104 μl−1, aggregated with 2 and 5 μM ADP at Ḡ = 335 and 1,335 s−1 in the absence of added fibrinogen. We therefore postulate that a protein such as von Willebrand factor, secreted during platelet isolation or in flow at sufficiently high shear rates, may yield the observed shear-rate dependent aggregation without fibrinogen.


Sign in / Sign up

Export Citation Format

Share Document