scholarly journals Regulation of the expression of annexin VIII in acute promyelocytic leukemia

Blood ◽  
1994 ◽  
Vol 84 (1) ◽  
pp. 279-286 ◽  
Author(s):  
A Sarkar ◽  
P Yang ◽  
YH Fan ◽  
ZM Mu ◽  
R Hauptmann ◽  
...  

Abstract Annexin VIII is a calcium-dependent phospholipid-binding protein previously identified as a blood anticoagulant based on in vitro studies. However, the physiologic function of annexin VIII remains unknown. In acute promyelocytic leukemia (APL) the annexin VIII gene is highly expressed, but its expression is undetectable in the blasts of other acute leukemias. In the present investigation, we showed using the APL-derived NB4 cell line that expression of the annexin VIII gene is regulated at the transcription level during induced differentiation by all-trans retinoic acid (ATRA). The half-life of the annexin VIII mRNA is about 5 to 6 hours, as determined by using actinomycin D as a transcription inhibitor. Analysis of the expression of annexin VIII protein in NB4 cells and in APL samples showed a consistent expression of a predominant 36-kD protein and a weak 72-kD protein. After ATRA- induced differentiation of NB4 cells, the annexin VIII protein level reduced gradually, but a detectable level persisted even after 4 days of induction. Because annexin VIII mRNA becomes undetectable after 48 hours of ATRA induction, this result indicates that annexin VIII is a relatively stable protein. A multiple tissue Northern blot analysis was performed, and we found that annexin VIII is normally expressed in the placenta and the lung. Cellular localization of the annexin VIII protein was determined by immunofluorescence staining and subcellular fractionation. These results indicated that annexin VIII is predominantly localized to the plasma membrane. The annexin VIII is neither an extracellular protein nor associated with the cell surface suggesting that it does not play a role in blood coagulation in vivo. The plasma membrane localization and its property as a phospholipase inhibitor suggests that annexin VIII may have a role in the signal transduction pathway in the APL cells.

Blood ◽  
1994 ◽  
Vol 84 (1) ◽  
pp. 279-286 ◽  
Author(s):  
A Sarkar ◽  
P Yang ◽  
YH Fan ◽  
ZM Mu ◽  
R Hauptmann ◽  
...  

Annexin VIII is a calcium-dependent phospholipid-binding protein previously identified as a blood anticoagulant based on in vitro studies. However, the physiologic function of annexin VIII remains unknown. In acute promyelocytic leukemia (APL) the annexin VIII gene is highly expressed, but its expression is undetectable in the blasts of other acute leukemias. In the present investigation, we showed using the APL-derived NB4 cell line that expression of the annexin VIII gene is regulated at the transcription level during induced differentiation by all-trans retinoic acid (ATRA). The half-life of the annexin VIII mRNA is about 5 to 6 hours, as determined by using actinomycin D as a transcription inhibitor. Analysis of the expression of annexin VIII protein in NB4 cells and in APL samples showed a consistent expression of a predominant 36-kD protein and a weak 72-kD protein. After ATRA- induced differentiation of NB4 cells, the annexin VIII protein level reduced gradually, but a detectable level persisted even after 4 days of induction. Because annexin VIII mRNA becomes undetectable after 48 hours of ATRA induction, this result indicates that annexin VIII is a relatively stable protein. A multiple tissue Northern blot analysis was performed, and we found that annexin VIII is normally expressed in the placenta and the lung. Cellular localization of the annexin VIII protein was determined by immunofluorescence staining and subcellular fractionation. These results indicated that annexin VIII is predominantly localized to the plasma membrane. The annexin VIII is neither an extracellular protein nor associated with the cell surface suggesting that it does not play a role in blood coagulation in vivo. The plasma membrane localization and its property as a phospholipase inhibitor suggests that annexin VIII may have a role in the signal transduction pathway in the APL cells.


Blood ◽  
2001 ◽  
Vol 97 (1) ◽  
pp. 264-269 ◽  
Author(s):  
Yongkui Jing ◽  
Long Wang ◽  
Lijuan Xia ◽  
Guo-qiang Chen ◽  
Zhu Chen ◽  
...  

Abstract All-trans retinoic acid (tRA) and arsenic trioxide (As2O3) induce non–cross-resistant complete clinical remission in patients with acute promyelocytic leukemia with t(15;17) translocation and target PML-RARα, the leukemogenic protein, by different pathways suggesting a possible therapeutic synergism. To evaluate this possibility, this study examined the effect of As2O3 on tRA-induced differentiation and, conversely, the effect of tRA on As2O3-induced apoptosis. As2O3 at subapoptotic concentrations (0.5 μM) decreased tRA-induced differentiation in NB4 cells but synergized with atRA to induce differentiation in tRA-resistant NB4 subclones MR-2 and R4 cells as measured by nitroblue tetrazolium reduction and tRA-inducible genes (TTGII, RARβ, RIG-E). tRA cleaved PML-RARα into distinct fragments in NB4 but not in tRA-resistant MR-2 or R4 cells, whereas As2O3 completely degraded PML-RARα in all 3 cell lines. As2O3-induced apoptosis was decreased by tRA pretreatment of NB4 cells but not of R4 cells and was associated with a strong induction of Bfl-1/A1 expression, a Bcl-2 protein family member. Severe combined immunodeficient mice bearing NB4 cells showed an additive survival effect after sequential treatment, but a toxic effect was observed after simultaneous treatment with tRA and As2O3. These data suggest that combined As2O3 and tRA treatment may be more effective than single agents in tRA-resistant patients. Although in vitro data do not always translate to in vivo response, toxicity and potential drug antagonism may be diminished by decreasing the concentration of As2O3 when given at the same time with therapeutic levels of tRA.


Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 4308-4316 ◽  
Author(s):  
Stefan Müller ◽  
Wilson H. Miller ◽  
Anne Dejean

Acute promyelocytic leukemia (APL) is characterized by a specific t(15;17) chromosomal translocation that fuses the genes encoding the promyelocytic leukemia protein (PML) and the retinoic acid receptor  (RAR). The resulting PML-RAR protein induces a block in the differentiation of the myeloid progenitor cells, which can be released by retinoic acid (RA) in vitro and in vivo. The RA-induced differentiation of APL blasts is paralleled by the degradation of the fusion protein and the relocation of wild-type PML from aberrant nuclear structures to its normal localization in nuclear bodies. Recently, arsenic trioxide (As2O3) treatment was proposed as an alternative therapy in APL, because it can induce complete remission in both RA-sensitive and -resistant APL patients. Intriguingly, As2O3 was also shown to induce degradation of the PML-RAR chimera and to reorganize PML nuclear bodies. Here we show that trivalent antimonials also have striking effects on RA-sensitive and RA-resistant APL cells. Treatment of the APL-derived NB4 cells and the RA-resistant subclone NB4R4 with antimony trioxide or potassium antimonyl tartrat triggers the degradation of the fusion protein and the concomitant reorganization of the PML nuclear bodies. In addition, as reported for As2O3, the antimonials provoke apoptosis of NB4 and NB4R4 cells. The mechanism of antimony action is likely to be similar to that of As2O3, notably both substances induce the attachment of the ubiquitin-like SUMO-1 molecule to the PML moiety of PML-RAR. From these data, we propose that, in analogy to As2O3, antimonials might have a beneficial therapeutic effect on APL patients, perhaps with less toxicity than arsenic.


Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 4308-4316 ◽  
Author(s):  
Stefan Müller ◽  
Wilson H. Miller ◽  
Anne Dejean

Abstract Acute promyelocytic leukemia (APL) is characterized by a specific t(15;17) chromosomal translocation that fuses the genes encoding the promyelocytic leukemia protein (PML) and the retinoic acid receptor  (RAR). The resulting PML-RAR protein induces a block in the differentiation of the myeloid progenitor cells, which can be released by retinoic acid (RA) in vitro and in vivo. The RA-induced differentiation of APL blasts is paralleled by the degradation of the fusion protein and the relocation of wild-type PML from aberrant nuclear structures to its normal localization in nuclear bodies. Recently, arsenic trioxide (As2O3) treatment was proposed as an alternative therapy in APL, because it can induce complete remission in both RA-sensitive and -resistant APL patients. Intriguingly, As2O3 was also shown to induce degradation of the PML-RAR chimera and to reorganize PML nuclear bodies. Here we show that trivalent antimonials also have striking effects on RA-sensitive and RA-resistant APL cells. Treatment of the APL-derived NB4 cells and the RA-resistant subclone NB4R4 with antimony trioxide or potassium antimonyl tartrat triggers the degradation of the fusion protein and the concomitant reorganization of the PML nuclear bodies. In addition, as reported for As2O3, the antimonials provoke apoptosis of NB4 and NB4R4 cells. The mechanism of antimony action is likely to be similar to that of As2O3, notably both substances induce the attachment of the ubiquitin-like SUMO-1 molecule to the PML moiety of PML-RAR. From these data, we propose that, in analogy to As2O3, antimonials might have a beneficial therapeutic effect on APL patients, perhaps with less toxicity than arsenic.


Blood ◽  
2001 ◽  
Vol 98 (9) ◽  
pp. 2862-2864 ◽  
Author(s):  
Bruno Cassinat ◽  
Sylvie Chevret ◽  
Fabien Zassadowski ◽  
Nicole Balitrand ◽  
Isabelle Guillemot ◽  
...  

Abstract Acute promyelocytic leukemia (APL) blasts possess a unique sensitivity to the differentiating effects of all-transretinoic acid (ATRA). Multicenter trials confirm that the combination of differentiation and cytotoxic therapy prolongs survival in APL patients. However relapses still occur, and exquisite adaptation of therapy to prognostic factors is essential to aim at a possible cure of the disease. A heterogeneity was previously reported in the differentiation rate of patients' APL blasts, and it was postulated that this may reflect the in vivo heterogeneous outcome. In this study, it is demonstrated that patients of the APL93 trial whose leukemic cells achieved optimal differentiation with ATRA in vitro at diagnosis had a significantly improved event-free survival (P = .01) and lower relapse rate (P = .04). This analysis highlights the importance of the differentiation step in APL therapy and justifies ongoing studies aimed at identifying novel RA-differentiation enhancers.


Blood ◽  
2002 ◽  
Vol 99 (3) ◽  
pp. 1014-1022 ◽  
Author(s):  
Qi Zhu ◽  
Ji-Wang Zhang ◽  
Hai-Qing Zhu ◽  
Yu-Lei Shen ◽  
Maria Flexor ◽  
...  

Abstract Acute promyelocytic leukemia (APL) is characterized by the specific chromosome translocation t(15;17) with promyelocytic leukemia-retinoic acid receptor-α (PML-RARA) fusion gene and the ability to undergo terminal differentiation as an effect of all-trans retinoic acid (ATRA). Recently, arsenic trioxide (As2O3) has been identified as an alternative therapy in patients with both ATRA-sensitive and ATRA-resistant APL. At the cellular level, As2O3 triggers apoptosis and a partial differentiation of APL cells in a dose-dependent manner; both effects are observed in vivo among patients with APL and APL animal models. To further explore the mechanism of As2O3-induced differentiation, the combined effects of arsenic and a number of other differentiation inducers on APL cell lines (NB4 and NB4-R1) and some fresh APL cells were examined. The data show that a strong synergy exists between a low concentration of As2O3 (0.25 μM) and the cyclic adenosine monophosphate (cAMP) analogue, 8-CPT-cAMP, in fully inducing differentiation of NB4, NB4-R1, and fresh APL cells. Furthermore, cAMP facilitated the degradation of As2O3-mediated fusion protein PML-RARα, a process considered to play a key role in overcoming the differentiation arrest of APL cells. On the other hand, cAMP could significantly inhibit cell growth by modulating several major players in G1/S transition regulation. Interestingly, H89, an antagonist of protein kinase A, could block the differentiation-inducing effect of As2O3potentiated by cAMP. These results thus support the existence of a novel signaling cross-talk for APL maturation, which may deepen understanding of As2O3-induced differentiation in vivo, and thus furnish insights for new therapeutic strategies.


Oncotarget ◽  
2016 ◽  
Vol 7 (29) ◽  
pp. 46028-46041 ◽  
Author(s):  
Farzaneh Atashrazm ◽  
Ray M. Lowenthal ◽  
Joanne L. Dickinson ◽  
Adele F. Holloway ◽  
Gregory M. Woods

Blood ◽  
2020 ◽  
Author(s):  
Yun Tan ◽  
Xiaoling Wang ◽  
Huan Song ◽  
Yi Zhang ◽  
Rongsheng Zhang ◽  
...  

Transcriptional deregulation initiated by oncogenic fusion proteins plays a vital role in leukemia. The prevailing view is that the oncogenic fusion protein PML/RARα, generated by the chromosome translocation t(15;17), functions as a transcriptional repressor in acute promyelocytic leukemia (APL). Here we provide rich evidence of how PML/RARα drives oncogenesis through both repressive and activating functions, particularly the importance of the newly identified activation role for the leukemogenesis of APL. The activating function of PML/RARα is achieved by recruiting both abundant P300 and HDAC1 and by the formation of super-enhancers. All-trans retinoic acid and arsenic trioxide, two widely used drugs in APL therapy, exert synergistic effects on controlling super-enhancer-associated PML/RARα-regulated targets in APL cells. We utilize a series of in vitro and in vivo experiments to demonstrate that PML/RARα-activated target gene GFI1 is necessary for the maintenance of APL cells, and that PML/RARα, likely oligomerized, transactivates GFI1 through chromatin conformation at the super-enhancer region. Finally, we profile GFI1 targets and reveal the interplay between GFI1 and PML/RARα on chromatin in co-regulating target genes. Our study provides genomic insight into the dual role of fusion transcription factors in transcriptional deregulation to drive leukemia development, highlighting the importance of globally dissecting regulatory circuits.


Sign in / Sign up

Export Citation Format

Share Document