scholarly journals Efficient retrovirus transduction of mouse pluripotent hematopoietic stem cells mobilized into the peripheral blood by treatment with granulocyte colony-stimulating factor and stem cell factor

Blood ◽  
1994 ◽  
Vol 84 (5) ◽  
pp. 1482-1491 ◽  
Author(s):  
DM Bodine ◽  
NE Seidel ◽  
MS Gale ◽  
AW Nienhuis ◽  
D Orlic

Abstract Cytokine-mobilized peripheral blood cells have been shown to participate in hematopoietic recovery after bone marrow (BM) transplantation, and are proposed to be useful targets for retrovirus- mediated gene transfer protocols. We treated mice with granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF) to mobilize hematopoietic progenitor cells into the peripheral blood. These cells were analyzed for the number and frequency of pluripotent hematopoietic stem cells (PHSC). We found that splenectomized animals treated for 5 days with G-CSF and SCF showed a threefold increase in the absolute number of PHSC over normal mice. The number of peripheral- blood PHSC increased 250-fold from 29 per untreated mouse to 7,200 in peripheral-blood PHSC in splenectomized animals treated for 5 days with G-CSF and SCF. Peripheral blood PHSC mobilized by treatment with G-CSF and SCF were analyzed for their ability to be transduced by retroviral vectors. Peripheral-blood PHSC from splenectomized animals G-CSF and SCF were transduced with a recombinant retrovirus containing the human MDR-1 gene. The frequency of gene transfer into peripheral blood PHSC from animals treated for 5 and 7 days was two-fold and threefold higher than gene transfer into PHSC from the BM of 5-fluorouracil-treated mice (P < .01). We conclude that peripheral blood stem cells mobilized by treatment with G-CSF and SCF are excellent targets for retrovirus- mediated gene transfer.

Blood ◽  
1994 ◽  
Vol 84 (5) ◽  
pp. 1482-1491 ◽  
Author(s):  
DM Bodine ◽  
NE Seidel ◽  
MS Gale ◽  
AW Nienhuis ◽  
D Orlic

Cytokine-mobilized peripheral blood cells have been shown to participate in hematopoietic recovery after bone marrow (BM) transplantation, and are proposed to be useful targets for retrovirus- mediated gene transfer protocols. We treated mice with granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF) to mobilize hematopoietic progenitor cells into the peripheral blood. These cells were analyzed for the number and frequency of pluripotent hematopoietic stem cells (PHSC). We found that splenectomized animals treated for 5 days with G-CSF and SCF showed a threefold increase in the absolute number of PHSC over normal mice. The number of peripheral- blood PHSC increased 250-fold from 29 per untreated mouse to 7,200 in peripheral-blood PHSC in splenectomized animals treated for 5 days with G-CSF and SCF. Peripheral blood PHSC mobilized by treatment with G-CSF and SCF were analyzed for their ability to be transduced by retroviral vectors. Peripheral-blood PHSC from splenectomized animals G-CSF and SCF were transduced with a recombinant retrovirus containing the human MDR-1 gene. The frequency of gene transfer into peripheral blood PHSC from animals treated for 5 and 7 days was two-fold and threefold higher than gene transfer into PHSC from the BM of 5-fluorouracil-treated mice (P < .01). We conclude that peripheral blood stem cells mobilized by treatment with G-CSF and SCF are excellent targets for retrovirus- mediated gene transfer.


Blood ◽  
1997 ◽  
Vol 89 (9) ◽  
pp. 3186-3191 ◽  
Author(s):  
Yoshikazu Sudo ◽  
Chihiro Shimazaki ◽  
Eishi Ashihara ◽  
Takehisa Kikuta ◽  
Hideyo Hirai ◽  
...  

Abstract We have previously shown that FLT-3 ligand (FL) mobilizes murine hematopoietic primitive and committed progenitor cells into blood dose-dependently. Whether FL also acts synergistically with granulocyte colony-stimulating factor (G-CSF ) to induce such mobilization has now been investigated. Five- to 6-week-old C57BL/6J mice were injected subcutaneously with recombinant human G-CSF (250 μg/kg), Chinese hamster ovarian cell-derived FL (20 μg/kg), or both cytokines daily for 5 days. The number of colony-forming cells (CFCs) in peripheral blood increased approximately 2-, 21-, or 480-fold after administration of FL, G-CSF, or the two cytokines together, respectively, for 5 days. The number of CFCs in bone marrow decreased after 3 days but was increased approximately twofold after 5 days of treatment with G-CSF. The number of CFCs in the bone marrow of mice treated with both FL and G-CSF showed a 3.4-fold increase after 3 days and subsequently decreased to below control values. The number of CFCs in spleen was increased 24.2- and 93.7-fold after 5 days of treatment with G-CSF alone or in combination with FL, respectively. The number of colony-forming unit-spleen (CFU-S) (day 12) in peripheral blood was increased 13.2-fold by G-CSF alone and 182-fold by G-CSF and FL used together after 5 days of treatment. Finally, the number of preCFU-S mobilized into peripheral blood was also increased by the administration of FL and G-CSF. These observations show that FL synergistically enhances the G-CSF–induced mobilization of hematopoietic stem cells and progenitor cells into blood in mice, and that this combination of growth factors may prove useful for obtaining such cells in humans for transplantation.


Blood ◽  
1994 ◽  
Vol 83 (12) ◽  
pp. 3795-3799 ◽  
Author(s):  
T de Revel ◽  
FR Appelbaum ◽  
R Storb ◽  
F Schuening ◽  
R Nash ◽  
...  

The effects of recombinant canine granulocyte colony-stimulating factor (rcG-CSF) and recombinant canine stem cell factor (rcSCF), a c-kit ligand, on the circulation of hematopoietic progenitor and stem cells were studied in a canine model. Administration of rcG-CSF (10 micrograms/kg) for 7 days led to a 5.4-fold increase in CFU-GM/mL of blood, while 7 days of rcSCF (200 micrograms/kg) led to an 8.2-fold increase. Although treatment with low-dose rcSCF (25 micrograms/kg) had no effect on the level of peripheral blood progenitors, 7-day exposure to a combination of G-CSF plus low dose SCF led to a 21.6-fold increase (P = .03). To assess the ability of these factors to increase the circulation of cells capable of rescuing animals after lethal total body irradiation (TBI), 1 x 10(8) peripheral blood mononuclear cells (PBMC)/kg were collected and cryopreserved from animals after 7 days of treatment with G-CSF, SCF or a combination of the two. One month later, animals were exposed to 9.2 Gy TBI and transplanted with the previously collected cells. Control animals transplanted with 1 x 10(8) PBMC/kg collected without pretreatment died with marrow aplasia 11 to 29 days after TBI as did animals treated with only low-dose SCF before cell collection. In contrast, all animals given PBMC collected after G-CSF, high-dose SCF, or a combination of G-CSF plus low-dose SCF recovered granulocyte function. Recovery to 500 granulocytes/microL after transplant took 17, 18.8, and 13.6 days, respectively, (P = .056 for the difference between the combination G-CSF-SCF group and the other two groups). In both the G-CSF and SCF groups, 4 of 5 animals completely recovered while 1 of 5 in each group died with prolonged thrombocytopenia. In the combination group, all 5 animals became long- term survivors. These studies demonstrate that both G-CSF and SCF dramatically increase the level of peripheral blood hematopoietic progenitor and stem cells and support the view that these factors can act synergistically.


Blood ◽  
1994 ◽  
Vol 83 (12) ◽  
pp. 3795-3799 ◽  
Author(s):  
T de Revel ◽  
FR Appelbaum ◽  
R Storb ◽  
F Schuening ◽  
R Nash ◽  
...  

Abstract The effects of recombinant canine granulocyte colony-stimulating factor (rcG-CSF) and recombinant canine stem cell factor (rcSCF), a c-kit ligand, on the circulation of hematopoietic progenitor and stem cells were studied in a canine model. Administration of rcG-CSF (10 micrograms/kg) for 7 days led to a 5.4-fold increase in CFU-GM/mL of blood, while 7 days of rcSCF (200 micrograms/kg) led to an 8.2-fold increase. Although treatment with low-dose rcSCF (25 micrograms/kg) had no effect on the level of peripheral blood progenitors, 7-day exposure to a combination of G-CSF plus low dose SCF led to a 21.6-fold increase (P = .03). To assess the ability of these factors to increase the circulation of cells capable of rescuing animals after lethal total body irradiation (TBI), 1 x 10(8) peripheral blood mononuclear cells (PBMC)/kg were collected and cryopreserved from animals after 7 days of treatment with G-CSF, SCF or a combination of the two. One month later, animals were exposed to 9.2 Gy TBI and transplanted with the previously collected cells. Control animals transplanted with 1 x 10(8) PBMC/kg collected without pretreatment died with marrow aplasia 11 to 29 days after TBI as did animals treated with only low-dose SCF before cell collection. In contrast, all animals given PBMC collected after G-CSF, high-dose SCF, or a combination of G-CSF plus low-dose SCF recovered granulocyte function. Recovery to 500 granulocytes/microL after transplant took 17, 18.8, and 13.6 days, respectively, (P = .056 for the difference between the combination G-CSF-SCF group and the other two groups). In both the G-CSF and SCF groups, 4 of 5 animals completely recovered while 1 of 5 in each group died with prolonged thrombocytopenia. In the combination group, all 5 animals became long- term survivors. These studies demonstrate that both G-CSF and SCF dramatically increase the level of peripheral blood hematopoietic progenitor and stem cells and support the view that these factors can act synergistically.


Blood ◽  
1998 ◽  
Vol 91 (12) ◽  
pp. 4504-4508 ◽  
Author(s):  
Roderick J. Johnson ◽  
Andy C. Rawstron ◽  
Steve Richards ◽  
Gareth J. Morgan ◽  
Derek R. Norfolk ◽  
...  

Abstract Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired hemolytic anemia resulting from a somatic mutation in a hemopoietic stem cell. In most cases of hemolytic PNH, the majority of the marrow cells are derived from the PNH clone. Recent evidence has indicated, however, that the majority of the most primitive peripheral blood stem cells (PBSCs) in PNH appear to be of normal phenotype. This has led to tentative suggestions that normal PBSCs could be collected and used for autologous transplantation. We have investigated this possibility in four PNH patients by treating them with granulocyte colony-stimulating factor (G-CSF) in an attempt to mobilize normal progenitors. The expression of glycosylphosphatidylinositol (GPI)-linked proteins was analyzed by flow cytometry on mature neutrophils, late stem cells (CD34+/CD38+), and primitive stem cells (CD34+/CD38−). The phenotyping and stem cell quantitation was performed in steady-state blood and post–G-CSF administration. The most primitive PBSCs (CD34+/CD38−) were almost all normal before G-CSF treatment, even when the patients' neutrophils were mainly PNH. However, after G-CSF, the cells that were mobilized into the peripheral blood were of a similar phenotype to the mature neutrophils, ie, mainly PNH. It is possible that PNH-stem cells are preferentially destroyed by complement in the peripheral blood leaving only normal cells in the circulation. After G-CSF, the PNH cells in the marrow are released into the blood. Our findings suggest that it would be difficult to collect sufficient numbers of normal stem cells for autologous transplantation.


Blood ◽  
1991 ◽  
Vol 78 (8) ◽  
pp. 1954-1962 ◽  
Author(s):  
TR Ulich ◽  
J del Castillo ◽  
IK McNiece ◽  
ES Yi ◽  
CP Alzona ◽  
...  

Abstract Recombinant rat stem cell factor (rrSCF) and recombinant human granulocyte colony-stimulating factor (G-CSF) coinjected for 1 week in rats cause a synergistic increase in mature marrow neutrophils accompanied by a striking decrease in erythroid and lymphoid marrow elements. The spleens of the same rats show increased granulopoiesis as well as increased erythropoiesis as compared with the spleens of rats treated with either growth factor alone. Splenic extramedullary erythropoiesis may act to compensate for the decrease in marrow erythropoiesis. The coinjection of rrSCF and G-CSF causes an increase in marrow mast cells at the end of 1 week, but the increase is much less than in rrSCF-alone-treated rats. The combination of rrSCF and G- CSF increases the rate of release of marrow neutrophils into the circulation and causes a dramatic synergistic peripheral neutrophilia, beginning especially after 4 days of treatment. Colony-forming assays of all experimental groups showed a synergistic increase in colony- forming unit granulocyte-macrophage (CFU-GM) in the marrow, but not in peripheral blood, after coincubation with SCF plus granulocyte- macrophage CSF (GM-CSF) as opposed to GM-CSF alone, showing anatomic compartmentalization between a more primitive marrow CFU-GM subset and a more mature peripheral blood CFU-GM subset. In vivo daily administration of SCF plus GM-CSF results in a synergistic increase in marrow neutrophils, but not the striking synergistic increase in circulating neutrophils that is observed with SCF plus G-CSF.


Sign in / Sign up

Export Citation Format

Share Document