scholarly journals Molecular Delineation of 13q Deletion Boundaries in 20 Patients With Myeloid Malignancies

Blood ◽  
1998 ◽  
Vol 91 (1) ◽  
pp. 231-237 ◽  
Author(s):  
R. La Starza ◽  
I. Wlodarska ◽  
A. Aventin ◽  
D. Falzetti ◽  
B. Crescenzi ◽  
...  

Abstract Fluorescent in situ hybridization (FISH) analysis with a panel of DNA probes for 13q13.1-q14.3 was performed on 20 cases of myeloid malignancies, of which 17 showed a del(13)(q) and three had translocations affecting 13q. By chromosome morphology, deletions consistently involved bands q14 and q21. In addition to confirming the chromosome data, FISH allowed us to delineate a commonly deleted region that was flanked by YAC 833A2 and YAC 854D4. Three cases with 13q translocations unexpectedly showed accompanying cryptic microdeletions of 13q, and in one case the commonly deleted region could be narrowed to a genomic segment, which includes YAC 937C7, RB1, and YAC 745E3. Homozygous deletions were not detected. This region overlaps with the smallest deleted region of 13q14 in chronic lymphocytic leukemia.

Blood ◽  
1998 ◽  
Vol 91 (1) ◽  
pp. 231-237 ◽  
Author(s):  
R. La Starza ◽  
I. Wlodarska ◽  
A. Aventin ◽  
D. Falzetti ◽  
B. Crescenzi ◽  
...  

Fluorescent in situ hybridization (FISH) analysis with a panel of DNA probes for 13q13.1-q14.3 was performed on 20 cases of myeloid malignancies, of which 17 showed a del(13)(q) and three had translocations affecting 13q. By chromosome morphology, deletions consistently involved bands q14 and q21. In addition to confirming the chromosome data, FISH allowed us to delineate a commonly deleted region that was flanked by YAC 833A2 and YAC 854D4. Three cases with 13q translocations unexpectedly showed accompanying cryptic microdeletions of 13q, and in one case the commonly deleted region could be narrowed to a genomic segment, which includes YAC 937C7, RB1, and YAC 745E3. Homozygous deletions were not detected. This region overlaps with the smallest deleted region of 13q14 in chronic lymphocytic leukemia.


2021 ◽  
pp. 112067212110307
Author(s):  
Raquel María Moral ◽  
Carlos Monteagudo ◽  
Javier Muriel ◽  
Lucía Moreno ◽  
Ana María Peiró

Introduction: Conjunctival melanoma is extremely rare in children and has low rates of resolution. Definitive histopathological diagnosis based exclusively on microscopic findings is sometimes difficult. Thus, early diagnosis and adequate treatment are essential to improve clinical outcomes. Clinical case: We present the first case in which the fluorescent in situ hybridization (FISH) diagnostic technique was applied to a 10-year-old boy initially suspected of having amelanotic nevi in his right eye. Based on the 65% of tumor cells with 11q13 (CCND1) copy number gain and 33% with 6p25 (RREB1) gain as measured by the FISH analysis, and on supporting histopathological findings, the diagnosis of conjunctival melanoma could be made. Following a larger re-excision, adjuvant therapy with Mitomycin C (MMC), cryotherapy and an amniotic membrane graft, the patient has remained disease-free during 9 years of long-term follow-up. Case discussion: Every ophthalmologist should remember to consider and not forget the possibility of using FISH analyses during the differential diagnosis of any suspicious conjunctival lesions. Genetic techniques, such as FISH, have led to great advances in the classification of ambiguous lesions. Evidence-based guidelines for diagnosing conjunctival melanoma in the pediatric population are needed to determine the most appropriate strategy for this age group.


2000 ◽  
Vol 23 (3) ◽  
pp. 531-533 ◽  
Author(s):  
Maria de Lourdes L.F. Chauffaille ◽  
Eliana Azevedo Marques ◽  
Jose Salvador Rodrigues de Oliveira ◽  
Maria Madalena Rodrigues ◽  
Maria Stella Figueiredo ◽  
...  

Chronic lymphocytic leukemia (CLL) presents a varying incidence of karyotypic abnormalities whose detection is complicated by difficulties in obtaining mitosis for analysis in this type of mature lymphocyte disorder. Since the introduction of molecular cytogenetics (FISH = fluorescent in situ hybridization), applying centromeric probes for chromosome 12 has made it possible to detect a higher percentage of trisomy 12 cases. The objective of the present study was to detect trisomy 12 by FISH (alpha satellite probe) in 13 patients with CLL whose karyotypes by G-banding were either normal or inadequate. Using this method trisomy 12 was detected in three patients in a percentage of positive cells varying from 55.5% to 79%, showing that FISH is a sensitive and highly specific method for trisomy detection and should be routinely performed when the karyotype is normal.


Blood ◽  
1999 ◽  
Vol 94 (2) ◽  
pp. 724-732 ◽  
Author(s):  
Palma Finelli ◽  
Sonia Fabris ◽  
Savina Zagano ◽  
Luca Baldini ◽  
Daniela Intini ◽  
...  

Abstract Chromosomal translocations involving the immunoglobulin heavy chain (IGH) locus at chromosome 14q32 represent a common mechanism of oncogene activation in lymphoid malignancies. In multiple myeloma (MM), variable chromosome partners have been identified by conventional cytogenetics, including the 11q13, 8q24, 18q21, and 6p21 loci. We and others have recently reported a novel, karyotypically undetectable chromosomal translocation t(4;14)(p16.3;q32) in MM-derived cell lines, as well as in primary tumors. The 4p16.3 breakpoints are relatively scattered and located less than 100 kb centromeric of the fibroblast growth factor receptor 3 (FGFR3) gene or within the recently identified WHSC1 gene, both of which are apparently deregulated by the translocation. To assess the frequency of the t(4;14)(p16.3;q32) translocation in MM, we performed a double-color fluorescent in situ hybridization (FISH) analysis of interphase nuclei with differently labeled probes specific for the IGH locus (a pool of plasmid clones specific for the IGH constant regions) or 4p16.3 (yeast artificial chromosome (YAC) 764-H1 spanning the region involved in breakpoints). Thirty MM patients, the MM-derived cell lines KMS-11 and OPM2, and six normal controls were examined. The identification of a t(4;14) translocation, evaluated as the presence of a der(14) chromosome, was based on the colocalization of signals specific for the two probes; a cutoff value of 15% (mean + 3 standard deviation [SD]) derived from the interphase FISH of the normal controls (range, 5% to 11%; mean ± SD, 8.16 ± 2.2) was used for the quantification analysis. In interphase FISH, five patients (one in clinical stage I, two in stage II, one in stage III, and a plasma cell leukemia) were found to be positive (≈15%). FISH metaphases with split or colocalized signals were detected in only two of the translocated cases and confirmed the pattern found in the interphase nuclei. Furthermore, in three of the five cases with the translocation, FISH analysis with the IGH joining probe (JH) showed the presence of the reciprocal product of the translocation [der(4) chromosome]. Overall, our study indicates that the t(4;14)(p16.3;q32) chromosomal translocation is a recurrent event in MM tumors and may contribute towards the detection of this lesion and our understanding of its pathogenetic and clinical implications in MM.


Blood ◽  
1999 ◽  
Vol 94 (2) ◽  
pp. 724-732 ◽  
Author(s):  
Palma Finelli ◽  
Sonia Fabris ◽  
Savina Zagano ◽  
Luca Baldini ◽  
Daniela Intini ◽  
...  

Chromosomal translocations involving the immunoglobulin heavy chain (IGH) locus at chromosome 14q32 represent a common mechanism of oncogene activation in lymphoid malignancies. In multiple myeloma (MM), variable chromosome partners have been identified by conventional cytogenetics, including the 11q13, 8q24, 18q21, and 6p21 loci. We and others have recently reported a novel, karyotypically undetectable chromosomal translocation t(4;14)(p16.3;q32) in MM-derived cell lines, as well as in primary tumors. The 4p16.3 breakpoints are relatively scattered and located less than 100 kb centromeric of the fibroblast growth factor receptor 3 (FGFR3) gene or within the recently identified WHSC1 gene, both of which are apparently deregulated by the translocation. To assess the frequency of the t(4;14)(p16.3;q32) translocation in MM, we performed a double-color fluorescent in situ hybridization (FISH) analysis of interphase nuclei with differently labeled probes specific for the IGH locus (a pool of plasmid clones specific for the IGH constant regions) or 4p16.3 (yeast artificial chromosome (YAC) 764-H1 spanning the region involved in breakpoints). Thirty MM patients, the MM-derived cell lines KMS-11 and OPM2, and six normal controls were examined. The identification of a t(4;14) translocation, evaluated as the presence of a der(14) chromosome, was based on the colocalization of signals specific for the two probes; a cutoff value of 15% (mean + 3 standard deviation [SD]) derived from the interphase FISH of the normal controls (range, 5% to 11%; mean ± SD, 8.16 ± 2.2) was used for the quantification analysis. In interphase FISH, five patients (one in clinical stage I, two in stage II, one in stage III, and a plasma cell leukemia) were found to be positive (≈15%). FISH metaphases with split or colocalized signals were detected in only two of the translocated cases and confirmed the pattern found in the interphase nuclei. Furthermore, in three of the five cases with the translocation, FISH analysis with the IGH joining probe (JH) showed the presence of the reciprocal product of the translocation [der(4) chromosome]. Overall, our study indicates that the t(4;14)(p16.3;q32) chromosomal translocation is a recurrent event in MM tumors and may contribute towards the detection of this lesion and our understanding of its pathogenetic and clinical implications in MM.


2020 ◽  
pp. 16-16
Author(s):  
M.O. Valchuk ◽  
O.V. Zotova ◽  
A.S. Lukyanova ◽  
O.Ya. Vyhovska ◽  
Yu.S. Karo ◽  
...  

Background. Gene aberrations are an important prognostic criterion for the course of B-cell chronic lymphocytic leukemia (B-CLL) and response to treatment, which includes not only immunochemotherapy, but also concomitant infusion therapy for the prevention and correction of complications. Objective. To investigate the presence of prognostic cytogenetic changes in patients with B-CLL with autoimmune hemolytic anemia (AIGA). To analyze the course of the disease and the direct effect of treatment in patients with cytogenetic changes of different nature. Materials and methods. Cytogenetic studies were performed by fluorescent in situ hybridization (FISH) on the interphase nuclei of peripheral blood lymphocytes in 11 patients with B-CLL with AIGA. Probes to the ATM genes (gene localized in region 11q23) and TP53 (gene localized in region 17p13) were used in the work, the deletions of which have prognostic value in B-CLL. All patients received treatment. Results. Among 11 patients with AIGA, signals to both genes were detected in nuclei 4. No deletions were detected. In the cells of the other 7 patients, the absence of a single signal to the ATM gene was detected, indicating the presence of a deletion of del(11)(q23). In recent patients, an unfavorable course of B-CLL disease was observed without response to treatment. Deletions of the TP53 gene in patients of the studied group were not detected. Conclusions. FISH study in patients with B-CLL with AIGA revealed the presence of important and prognostically unfavorable chromosomal rearrangement of the ATM gene in 63 % of patients.


2013 ◽  
Vol 133 (4) ◽  
pp. 1111-1114 ◽  
Author(s):  
Pierre Sujobert ◽  
Wendy Cuccuini ◽  
Dominique Vignon-Pennamen ◽  
Nadine Martin-Garcia ◽  
Anne Flore Albertini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document