γc Gene Transfer in the Presence of Stem Cell Factor, FLT-3L, Interleukin-7 (IL-7), IL-1, and IL-15 Cytokines Restores T-Cell Differentiation From γc(−) X-Linked Severe Combined Immunodeficiency Hematopoietic Progenitor Cells in Murine Fetal Thymic Organ Cultures

Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 4090-4097 ◽  
Author(s):  
S. Hacein-Bey ◽  
G. De Saint Basile ◽  
J. Lemerle ◽  
A. Fischer ◽  
M. Cavazzana-Calvo

Abstract X-linked severe combined immunodeficiency (SCID-Xl) is a rare human inherited disorder in which early T and natural killer (NK) lymphocyte development is blocked. The genetic disorder results from mutations in the common γc chain that participates in several cytokine receptors including the interleukin-2 (IL-2), IL-4, IL-7, IL-9, and IL-15 receptors. We have shown in a previous report that γc gene transfer into SCID-Xl bone marrow (BM) cells restores efficient NK cell differentiation. In this study, we have focused on the introduction of the γc gene into SCID-Xl hematopoietic stem cells with the goal of obtaining differentiation into mature T cells. For this purpose, we used the in vitro hybrid fetal thymic organ culture (FTOC) system in which a combination of cytokines consisting of stem cell factor (SCF), Flt-3L, IL-7, IL-1, and IL-15 is added concomitantly. In this culture system, CD34+ marrow cells from two SCID-Xl patients were able to mature into double positive CD4+ CD8+ cells and to a lesser degree into CD4+ TCRβ+ single positive cells after retroviral-mediated γc gene transfer. In addition, examination of the output cell population at the TCR DJβ1 locus exhibited multiple rearrangements. These results indicate that restoration of the γc/JAK/STAT signaling pathway during the early developmental stages of thymocytes can correct the T-cell differentiation block in SCID-Xl hematopoietic progenitor cells and therefore establishes a basis for further clinical γc gene transfer studies.

Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 4090-4097 ◽  
Author(s):  
S. Hacein-Bey ◽  
G. De Saint Basile ◽  
J. Lemerle ◽  
A. Fischer ◽  
M. Cavazzana-Calvo

X-linked severe combined immunodeficiency (SCID-Xl) is a rare human inherited disorder in which early T and natural killer (NK) lymphocyte development is blocked. The genetic disorder results from mutations in the common γc chain that participates in several cytokine receptors including the interleukin-2 (IL-2), IL-4, IL-7, IL-9, and IL-15 receptors. We have shown in a previous report that γc gene transfer into SCID-Xl bone marrow (BM) cells restores efficient NK cell differentiation. In this study, we have focused on the introduction of the γc gene into SCID-Xl hematopoietic stem cells with the goal of obtaining differentiation into mature T cells. For this purpose, we used the in vitro hybrid fetal thymic organ culture (FTOC) system in which a combination of cytokines consisting of stem cell factor (SCF), Flt-3L, IL-7, IL-1, and IL-15 is added concomitantly. In this culture system, CD34+ marrow cells from two SCID-Xl patients were able to mature into double positive CD4+ CD8+ cells and to a lesser degree into CD4+ TCRβ+ single positive cells after retroviral-mediated γc gene transfer. In addition, examination of the output cell population at the TCR DJβ1 locus exhibited multiple rearrangements. These results indicate that restoration of the γc/JAK/STAT signaling pathway during the early developmental stages of thymocytes can correct the T-cell differentiation block in SCID-Xl hematopoietic progenitor cells and therefore establishes a basis for further clinical γc gene transfer studies.


Blood ◽  
2008 ◽  
Vol 112 (6) ◽  
pp. 2278-2286 ◽  
Author(s):  
Sebastian Newrzela ◽  
Kerstin Cornils ◽  
Zhixiong Li ◽  
Christopher Baum ◽  
Martijn H. Brugman ◽  
...  

AbstractLeukemia caused by retroviral insertional mutagenesis after stem cell gene transfer has been reported in several experimental animals and in patients treated for X-linked severe combined immunodeficiency. Here, we analyzed whether gene transfer into mature T cells bears the same genotoxic risk. To address this issue in an experimental “worst case scenario,” we transduced mature T cells and hematopoietic progenitor cells from C57BL/6 (Ly5.1) donor mice with high copy numbers of gamma retroviral vectors encoding the potent T-cell oncogenes LMO2, TCL1, or ΔTrkA, a constitutively active mutant of TrkA. After transplantation into RAG-1–deficient recipients (Ly5.2), animals that received stem cell transplants developed T-cell lymphoma/leukemia for all investigated oncogenes with a characteristic phenotype and after characteristic latency periods. Ligation-mediated polymerase chain reaction analysis revealed monoclonality or oligoclonality of the malignancies. In striking contrast, none of the mice that received T-cell transplants transduced with the same vectors developed leukemia/lymphoma despite persistence of gene-modified cells. Thus, our data provide direct evidence that mature T cells are less prone to transformation than hematopoietic progenitor cells.


Blood ◽  
1996 ◽  
Vol 87 (10) ◽  
pp. 4100-4108 ◽  
Author(s):  
N Okumura ◽  
K Tsuji ◽  
Y Ebihara ◽  
I Tanaka ◽  
N Sawai ◽  
...  

We investigated the effects of stem cell factor (SCF) on the migration of murine bone marrow hematopoietic progenitor cells (HPC) in vitro using a modification of the checkerboard assay. Chemotactic and chemokinetic activities of SCF on HPC were evaluated by the numbers of HPC migrated on positive and negative gradients of SCF, respectively. On both positive and negative gradients of SCF, HPC began to migrate after 4 hours incubation, and their numbers then increased time- dependently. These results indicated that SCF functions as a chemotactic and chemokinetic agent for HPC. Analysis of types of colonies derived from the migrated HPC showed that SCF had chemotactic and chemokinetic effects on all types of HPC. When migrating activities of other cytokines were examined, interleukin (IL)-3 and IL-11 also affected the migration of HPC, but the degrees of each effect were lower than that of SCF. The results of the present study demonstrated that SCF is one of the most potent chemotactic and chemokinetic factors for HPC and suggest that SCF may play an important role in the flow of HPC into bone marrow where stromal cells constitutively produce SCF.


Blood ◽  
1996 ◽  
Vol 87 (8) ◽  
pp. 3195-3202 ◽  
Author(s):  
GP Reddy ◽  
PJ Quesenberry

Stem cell factor (SCF) is known to act synergistically with other hematopoietic factors in increasing the colony formation of hematopoietic progenitor cells. We have shown that interleukin-3 (IL-3)- dependent proliferation of NFS-60 cells is associated with the induction of a specific calmodulin-binding protein of about 68 kD (CaM- BP68). To evaluate the relationship between proliferative stimulation and the induction of CaM-BP68 by cytokines, we examined whether the increased proliferative potential of NFS-60 cells in response to SCF is reflected in an increased induction of the CaM-BP68. We observed that SCF alone has a limited effect on proliferative stimulation and on the induction of CaM-BP68 in factor-deprived NFS-60 cells. However, when combined with IL-3, granulocyte colony-stimulating factor (G-CSF), or IL-6, it caused a significant increase in cytokine-dependent proliferative stimulation, as well as in the induction of CaM-BP68. Furthermore, an increase in IL-3-dependent induction of CaM-BP68 in the presence of SCF coincided with a corresponding increase in thymidine kinase activity, whose expression is linked to G1/S transition of the cells. At low concentrations SCF caused a synergistic increase in IL-3- dependent induction of both CaM-BP68 and thymidine kinase activity. In contrast to the changes in CaM-BP68 and thymidine kinase activity, no significant changes in DNA polymerase alpha were observed in factor- deprived NFS-60 cells in response to IL-3 and/or SCF. These observations suggest an increased expression of CaM-BP68 and thymidine kinase are associated with the synergistic effect of SCF on factor- dependent proliferation of hematopoietic progenitor cells.


2010 ◽  
Vol 40 (7) ◽  
pp. 711-719 ◽  
Author(s):  
Fumihito Tajima ◽  
Hiroyuki Tsuchiya ◽  
Kenichi Nishikawa ◽  
Motoyuki Kataoka ◽  
Ichiro Hisatome ◽  
...  

Blood ◽  
1996 ◽  
Vol 88 (10) ◽  
pp. 3901-3909 ◽  
Author(s):  
M Cavazzana-Calvo ◽  
S Hacein-Bey ◽  
G de Saint Basile ◽  
C De Coene ◽  
F Selz ◽  
...  

Natural killer (NK) cells are characterized by their ability to mediate spontaneous cytotoxicity against susceptible tumor cells and infected cells. They differentiate from hematopoietic progenitor cells. Patients with X-linked severe combined immunodeficiency (SCID X1) carry mutations in the gamma c cytokine receptor gene that result in lack of both T and NK cells. To assess the role of interleukin-2 (IL-2), IL-7, and IL-15 cytokines, which share gamma c receptor subunit, in NK cell differentiation, we have studied NK cell differentiation from cord blood CD34 (+) cells in the presence of either stem cell factor (SCF), IL-2, and IL-7 or SCF and IL-15. The former cytokine combination efficiently induced CD34 (+) CD7 (+) cord blood cells to proliferate and mature into NK cells, while the latter was also able to induce NK cell differentiation from more immature CD34 (+) CD7 (-) cord blood cells. NK cells expressed CD56 and efficiently killed K562 target cells. These results show that IL-15 could play an important role in the maturation of NK cell from cord blood progenitors. Following retroviral-mediated gene transfer of gamma c into SCID X1 bone marrow progenitors, it was possible to reproduce a similar pattern of NK cell differentiation in two SCID-X1 patients with SCF + IL-2 + IL-7 and more efficiently in one of them with SCF + IL-15. These results strongly suggest that the gamma c chain transduces major signal(s) involved in NK cell differentiation from hematopoietic progenitor cells and that IL-15 interaction with gamma c is involved in this process at an earlier step than IL-2/IL-7 interactions of gamma c are. It also shows that gene transfer into hematopoietic progenitor cells could potentially restore NK cell differentiation in SCID X1 patients.


Sign in / Sign up

Export Citation Format

Share Document