Coexistence of Two Functioning T-Cell Repertoires in Healthy Ex-Thalassemics Bearing a Persistent Mixed Chimerism Years After Bone Marrow Transplantation

Blood ◽  
1999 ◽  
Vol 94 (10) ◽  
pp. 3432-3438 ◽  
Author(s):  
Manuela Battaglia ◽  
Marco Andreani ◽  
Marisa Manna ◽  
Sonia Nesci ◽  
Paola Tonucci ◽  
...  

Bone marrow transplantation (BMT) from an HLA-identical donor is an established therapy to cure homozygous β-thalassemia. Approximately 10% of thalassemic patients developed a persistent mixed chimerism (PMC) after BMT characterized by stable coexistence of host and donor cells in all hematopoietic compartments. Interestingly, in the erythrocytic lineage, close to normal levels of hemoglobin can be observed in the absence of complete donor engraftment. In the lymphocytic lineage, the striking feature is the coexistence of immune cells. This implies a state of tolerance or anergy, raising the issue of immunocompetence of the host. To understand the state of the T cells in PMC, repertoire analysis and functional studies were performed on cells from 3 ex-thalassemics. Repertoire analysis showed a profound skewing. This was due to an expansion of some T cells and not to a collapse of the repertoire, because phytohemagglutinin stimulation showed the presence of a complex repertoire. The immunocompetence of the chimeric immune systems was further established by showing responses to alloantigens and recall antigens in vitro. Both host and donor lymphocytes were observed in the cultures. These data suggest that the expanded T cells play a role in specific tolerance while allowing a normal immune status in these patients.

Blood ◽  
1990 ◽  
Vol 75 (1) ◽  
pp. 296-304 ◽  
Author(s):  
DC Roy ◽  
R Tantravahi ◽  
C Murray ◽  
K Dear ◽  
B Gorgone ◽  
...  

Mixed hematopoietic chimerism (MC) is a common finding after allogeneic bone marrow transplantation (BMT), but the natural history of this phenomenon remains unclear. To understand the evolution and the implications of this finding, we performed a prospective analysis of the development of mixed chimerism in 43 patients with hematologic malignancies who received bone marrow (BM) from human leukocyte antigen (HLA)-identical sibling donors. T-cell depletion in vitro with anti-T12 (CD6) monoclonal antibody and rabbit complement was used as the only method of graft-versus-host disease (GVHD) prophylaxis. Overall, MC was identified in peripheral blood (PB) and BM in 22 of 43 (51%) patients evaluated. MC was found by restriction fragment length polymorphism (RFLP) analysis in 21 of 40 (53%) patients, by cytogenetic analysis in 6 of 29 (21%) patients, and by red blood cell phenotyping in 4 of 9 (44%) patients. RFLP studies were performed at 0.5, 1, 3, 6, 9, and 12 months post-BMT and then every 6 months, and showed a high probability of developing MC in the first 6 months after BMT followed by stabilization after 12 months. Cytogenetic analysis was less sensitive in detecting MC. Once MC was detected after BMT, the percentage of recipient cells increased very slowly over more than 3 years of follow- up, and no patient reverted to complete donor hematopoiesis (CDH). Thus, recipient and donor cells remained in a relative state of equilibrium for prolonged periods that seemed to favor recipient cells over donor cells. Patient's disease, remission status, or intensity of the transplant preparative regimen did not influence the subsequent development of mixed chimerism. Early immunologic reconstitution was the only factor that correlated with the subsequent chimeric status of the patients. The percentage and absolute number of T3 (CD3) and T4 (CD4) positive cells at day 14 after BMT were significantly higher in the patients who maintained CDH but NK cell reconstitution was similar in both groups, suggesting that early reconstitution with T cells may play a role in preventing recovery of recipient cells after BMT. GVHD was also associated with maintenance of CDH, but the probability of relapse, survival, and disease-free survival was identical in patients with MC and CDH.


Blood ◽  
2002 ◽  
Vol 100 (10) ◽  
pp. 3521-3526 ◽  
Author(s):  
Jiang F. Zhong ◽  
Yuxia Zhan ◽  
W. French Anderson ◽  
Yi Zhao

The engraftment of donor bone marrow (BM) cells in nonablated mice is inefficient. Niche availability has been thought to be the reason, and cytoablation with irradiation or cytotoxic agents is routinely used with the belief that this frees the preoccupied niches in recipients. In this study, donor cell redistribution and proliferation in ablated and nonablated mice were compared by implanting donor cells directly into the femur cavity of sedated mice. The redistribution of Lin− donor cells into BM was similar between ablated and nonablated mice. Poor engraftment in nonablated mice was shown to be the result of inefficient donor cell proliferation rather than because of a lack of space. Competitive repopulation assays demonstrated that the donor hematopoietic stem cells (HSCs) were present in nonirradiated recipients for at least 6 months after transplantation, but that they did not expand as did their counterparts in lethally irradiated mice. This study suggests that efficient bone marrow transplantation in nonablated recipients may be possible as a result of better understanding of HSC proliferative regulation and appropriate in vitro manipulation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1277-1277
Author(s):  
Seok-Goo Cho ◽  
Min-Chung Park ◽  
So-Youn Min ◽  
Young-Gyu Cho ◽  
Seok Lee ◽  
...  

Abstract Objective: To investigate the immunoregulatory effects of allogeneic mixed chimerism induced by T-cell depleted, nonmyeloablative bone marrow transplantation (TCD-NMT) on chronic inflammatory arthritis and autoimmunity developed in interleukin-1 receptor antagonist-deficient (IL-1Ra−/ −) mice. Methods: IL-1Ra−/ − mice (H-2kd) were treated with anti-asialoGM1 Ab, TBI 500 cGy, and TCD-NMT from C57BL/6 mice (H-2kb). Engraftment and chimerism were evaluated on peripheral blood (PB), lymph node, and spleen by multi-color flow cytometry. The severity of arthritis was evaluated by clinical score and histopathology. IgG1 and IgG2a subtype of anti-type II collagen (CII) were measured in PB samples. After T cells were stimulated with CII, ovalbumin, and phytohemagglutinin, T-cell proliferation response and cytokines production (INF-g, TNF-a, IL-10, and IL-17) in culture supernatant were assayed. Results: All the transplanted IL-1Ra mice showed marked improvement of arthritis within 3 weeks after transplantation as well as successful induction of mixed chimerism. Mice in mixed chimerism showed higher level of anti-CII IgG1 and lower level of anti-CII IgG2a and weaker T cell proliferative response than in control groups, such as no-treatment and conditioning only without BM rescue. In mixed chimera, INF-g, TNF-a and IL-17 production from CII-stimulated T cells was significantly suppressed and IL-10 production was significantly increased as compared to the control groups. Conclusion: These observations indicate that the introduction of allogeneic mixed chimerism has a strong immunoregulatroy potential to correct established chronic inflammatory arthritis and autoimmunity originating from dysregulated proinflammatory cytokine network.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hisanori Mayumi

The bone marrow transplantation (BMT) between haplo-identical combinations (haploBMT) could cause unacceptable bone marrow graft rejection and graft-versus-host disease (GVHD). To cross such barriers, Johns Hopkins platform consisting of haploBMT followed by post-transplantation (PT) cyclophosphamide (Cy) has been used. Although the central mechanism of the Johns Hopkins regimen is Cy-induced tolerance with bone marrow cells (BMC) followed by Cy on days 3 and 4, the mechanisms of Cy-induced tolerance may not be well understood. Here, I review our studies in pursuing skin-tolerance from minor histocompatibility (H) antigen disparity to xenogeneic antigen disparity through fully allogeneic antigen disparity. To overcome fully allogeneic antigen barriers or xenogeneic barriers for skin grafting, pretreatment of the recipients with monoclonal antibodies (mAb) against T cells before cell injection was required. In the cells-followed-by-Cy system providing successful skin tolerance, five mechanisms were identified using the correlation between super-antigens and T-cell receptor (TCR) Vβ segments mainly in the H-2-identical murine combinations. Those consist of: 1) clonal destruction of antigen-stimulated-thus-proliferating mature T cells with Cy; 2) peripheral clonal deletion associated with immediate peripheral chimerism; 3) intrathymic clonal deletion associated with intrathymic chimerism; 4) delayed generation of suppressor T (Ts) cells; and 5) delayed generation of clonal anergy. These five mechanisms are insufficient to induce tolerance when the donor-recipient combinations are disparate in MHC antigens plus minor H antigens as is seen in haploBMT. Clonal destruction is incomplete when the antigenic disparity is too strong to establish intrathymic mixed chimerism. Although this incomplete clonal destruction leaves the less-proliferative, antigen-stimulated T cells behind, these cells may confer graft-versus-leukemia (GVL) effects after haploBMT/PTCy.


Blood ◽  
1990 ◽  
Vol 75 (1) ◽  
pp. 296-304 ◽  
Author(s):  
DC Roy ◽  
R Tantravahi ◽  
C Murray ◽  
K Dear ◽  
B Gorgone ◽  
...  

Abstract Mixed hematopoietic chimerism (MC) is a common finding after allogeneic bone marrow transplantation (BMT), but the natural history of this phenomenon remains unclear. To understand the evolution and the implications of this finding, we performed a prospective analysis of the development of mixed chimerism in 43 patients with hematologic malignancies who received bone marrow (BM) from human leukocyte antigen (HLA)-identical sibling donors. T-cell depletion in vitro with anti-T12 (CD6) monoclonal antibody and rabbit complement was used as the only method of graft-versus-host disease (GVHD) prophylaxis. Overall, MC was identified in peripheral blood (PB) and BM in 22 of 43 (51%) patients evaluated. MC was found by restriction fragment length polymorphism (RFLP) analysis in 21 of 40 (53%) patients, by cytogenetic analysis in 6 of 29 (21%) patients, and by red blood cell phenotyping in 4 of 9 (44%) patients. RFLP studies were performed at 0.5, 1, 3, 6, 9, and 12 months post-BMT and then every 6 months, and showed a high probability of developing MC in the first 6 months after BMT followed by stabilization after 12 months. Cytogenetic analysis was less sensitive in detecting MC. Once MC was detected after BMT, the percentage of recipient cells increased very slowly over more than 3 years of follow- up, and no patient reverted to complete donor hematopoiesis (CDH). Thus, recipient and donor cells remained in a relative state of equilibrium for prolonged periods that seemed to favor recipient cells over donor cells. Patient's disease, remission status, or intensity of the transplant preparative regimen did not influence the subsequent development of mixed chimerism. Early immunologic reconstitution was the only factor that correlated with the subsequent chimeric status of the patients. The percentage and absolute number of T3 (CD3) and T4 (CD4) positive cells at day 14 after BMT were significantly higher in the patients who maintained CDH but NK cell reconstitution was similar in both groups, suggesting that early reconstitution with T cells may play a role in preventing recovery of recipient cells after BMT. GVHD was also associated with maintenance of CDH, but the probability of relapse, survival, and disease-free survival was identical in patients with MC and CDH.


Sign in / Sign up

Export Citation Format

Share Document