A Novel Serpin Expressed by Blood-Borne Microfilariae of the Parasitic Nematode Brugia malayi Inhibits Human Neutrophil Serine Proteinases

Blood ◽  
1999 ◽  
Vol 94 (4) ◽  
pp. 1418-1428 ◽  
Author(s):  
Xingxing Zang ◽  
Maria Yazdanbakhsh ◽  
Haobo Jiang ◽  
Michael R. Kanost ◽  
Rick M. Maizels

Abstract Serine proteinase inhibitors (serpins) play a vital regulatory role in a wide range of biological processes, and serpins from viruses have been implicated in pathogen evasion of the host defence system. For the first time, we report a functional serpin gene from nematodes that may function in this manner. This gene, named Bm-spn-2, has been isolated from the filarial nematode Brugia malayi, a causative agent of human lymphatic filariasis. Polymerase chain reaction (PCR) and Western blot experiments indicate that Bm-spn-2 is expressed only by microfilariae (Mf), which are the long-lived blood-dwelling larval stage. A survey of the greater than 14,000 expressed sequence tags (ESTs) from B malayi deposited in dbEST shows that greater than 2% of the ESTs sequenced from Mf cDNA libraries correspond to Bm-spn-2. Despite its abundance in the microfilarial stage, Bm-spn-2 has not been found in any other point in the life cycle. The predicted protein encoded byBm-spn-2 contains 428 amino acids with a putative signal peptide. Antibodies to recombinant Bm-SPN-2 protein react specifically with a 47.5-kD native protein in Mf extract. Bm-SPN-2 is one of the largest of the 93 known serpins, due to a 22 amino acid carboxy-terminal extension, and contains the conserved serpin signature sequence. Outside these regions, levels of homology are low, and only a distant relationship can been seen to a Caenorhabditis elegansserpin. The Bm-spn-2 gene contains 6 introns, 2 of which appear to be shared by both nematode species. The B malayi introns have an extended and conserved 3′ splice site and are relatively large compared with C elegans. A panel of mammalian serine proteinases were screened and Bm-SPN-2 protein was found to specifically inhibit enzymatic activity of human neutrophil cathepsin G and human neutrophil elastase, but not a range of other serine proteinases. It is possible that Bm-SPN-2 could function as a stage-specific serpin in the blood environment of the microfilarial parasite in protection from human immunity and thus may be a good candidate for protective vaccine.

Blood ◽  
1999 ◽  
Vol 94 (4) ◽  
pp. 1418-1428 ◽  
Author(s):  
Xingxing Zang ◽  
Maria Yazdanbakhsh ◽  
Haobo Jiang ◽  
Michael R. Kanost ◽  
Rick M. Maizels

Serine proteinase inhibitors (serpins) play a vital regulatory role in a wide range of biological processes, and serpins from viruses have been implicated in pathogen evasion of the host defence system. For the first time, we report a functional serpin gene from nematodes that may function in this manner. This gene, named Bm-spn-2, has been isolated from the filarial nematode Brugia malayi, a causative agent of human lymphatic filariasis. Polymerase chain reaction (PCR) and Western blot experiments indicate that Bm-spn-2 is expressed only by microfilariae (Mf), which are the long-lived blood-dwelling larval stage. A survey of the greater than 14,000 expressed sequence tags (ESTs) from B malayi deposited in dbEST shows that greater than 2% of the ESTs sequenced from Mf cDNA libraries correspond to Bm-spn-2. Despite its abundance in the microfilarial stage, Bm-spn-2 has not been found in any other point in the life cycle. The predicted protein encoded byBm-spn-2 contains 428 amino acids with a putative signal peptide. Antibodies to recombinant Bm-SPN-2 protein react specifically with a 47.5-kD native protein in Mf extract. Bm-SPN-2 is one of the largest of the 93 known serpins, due to a 22 amino acid carboxy-terminal extension, and contains the conserved serpin signature sequence. Outside these regions, levels of homology are low, and only a distant relationship can been seen to a Caenorhabditis elegansserpin. The Bm-spn-2 gene contains 6 introns, 2 of which appear to be shared by both nematode species. The B malayi introns have an extended and conserved 3′ splice site and are relatively large compared with C elegans. A panel of mammalian serine proteinases were screened and Bm-SPN-2 protein was found to specifically inhibit enzymatic activity of human neutrophil cathepsin G and human neutrophil elastase, but not a range of other serine proteinases. It is possible that Bm-SPN-2 could function as a stage-specific serpin in the blood environment of the microfilarial parasite in protection from human immunity and thus may be a good candidate for protective vaccine.


1996 ◽  
Vol 43 (3) ◽  
pp. 507-513 ◽  
Author(s):  
D Stachowiak ◽  
A Polanowski ◽  
G Bieniarz ◽  
T Wilusz

Two serine proteinase inhibitors (ELTI I and ELTI II) have been isolated from mature seeds of Echinocystis lobata by ammonium sulfate fractionation, methanol precipitation, ion exchange chromatography, affinity chromatography on immobilized anhydrotrypsin and HPLC. ELTI I and ELTI II consist of 33 and 29 amino-acid residues, respectively. The primary structures of these inhibitors are as follows: ELTI I KEEQRVCPRILMRCKRDSDCLAQCTCQQSGFCG ELTI II RVCPRILMRCKRDSDCLAQCTCQQSGFCG The inhibitors show sequence similarity with the squash inhibitor family. ELTI I differs from ELTI II only by the presence of the NH2-terminal tetrapeptide Lys-Glu-Glu-Gln. The association constants (Ka) of ELTI I and ELTI II with bovine-trypsin were determined to be 6.6 x 10(10) M-1, and 3.1 x 10(11) M-1, whereas the association constants of these inhibitors with cathepsin G were 1.2 x 10(7) M-1, and 1.1 x 10(7) M-1, respectively.


1984 ◽  
Vol 218 (3) ◽  
pp. 953-959 ◽  
Author(s):  
L Kuehn ◽  
M Rutschmann ◽  
B Dahlmann ◽  
H Reinauer

Three different serine proteinase inhibitors were isolated from rat serum and purified to apparent homogeneity. One of the inhibitors appears to be homologous to alpha 1-proteinase inhibitor isolated from man and other species, but the other two, designated rat proteinase inhibitor I and rat proteinase inhibitor II, seem to have no human counterpart. alpha 1-Proteinase inhibitor (Mr 55000) inhibits trypsin, chymotrypsin and elastase, the three serine proteinases tested. Rat proteinase inhibitor I (Mr 66000) is active towards trypsin and chymotrypsin, but is inactive towards elastase. Rat proteinase inhibitor II (Mr 65000) is an effective inhibitor of trypsin only. Their contributions to the trypsin-inhibitory capacity of rat serum are about 68, 14 and 18% for alpha 1-proteinase inhibitor, rat proteinase inhibitor I and rat proteinase inhibitor II respectively.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1716-1716
Author(s):  
Andrew J. Gale ◽  
Diana Rozenshteyn ◽  
Justin Riceberg

Abstract Neutrophils and monocytes express cathepsin G and elastase and also can bind to activated platelets, thus they can be localized to the site of active coagulation. Early studies suggested that cathepsin G and elastase inactivated factor VIII (FVIII) and were thus anticoagulant. But other studies have suggested procoagulant functions for cathepsin G and elastase in activation of factor V or activation of platelets among other possible mechanisms. Therefore, we investigated the effects of human neutrophil elastase and human neutrophil cathepsin G on FVIII/VIIIa. Elastase does inactivate both FVIII and FVIIIa but cathepsin G activates FVIII while having very little effect on FVIIIa. Cathepsin G activation of FVIII is enhanced by phospholipid vesicles, apparently due to enhanced rate of cleavage and stabilization of the resulting molecule. The maximum level of activation is less than that of thrombin, but it is still four-fold as measured in an APTT assay. Cleavage sites for both proteases in FVIII were identified by Edman degradation and gel analysis. FVIII cleavages are limited to a few specific sites that are mostly located near known activating and inactivating cleavage sites. A notable exception is a cleavage site for elastase after valine 26 in the A1 domain. Cathepsin G cleavage sites near to thrombin cleavage sites likely contribute to the partial activation of FVIII. The unique elastase cleavage site at valine 26 likely contributes to the inactivation of FVIII and FVIIIa. Therefore, it is possible that neutrophils and monocytes may provide some pro-coagulant effect by activating FVIII and may also provide negative feedback by inactivating FVIIIa as well.


Author(s):  
Qinheng Zheng ◽  
Jordan L. Woehl ◽  
Seiya Kitamura ◽  
Diogo Santos-Martins ◽  
Christopher J. Smedley ◽  
...  

<div> <div> <div> <p>Sulfur-Fluoride Exchange (SuFEx) has emerged as the new generation of click chemistry. We report here a SuFEx-enabled approach exploiting the “sleeping beauty” phenomenon of sulfur fluoride compounds in the context of the serendipitous discovery of selective covalent human neutrophil elastase (hNE) inhibitors. Evaluation of an ever-growing collection of SuFExable compounds toward various biological assays unexpectedly yielded a selective and covalent hNE inhibitor, benzene-1,2-disulfonyl fluoride. Derivatization of the initial hit led to a better agent, 2- triflyl benzenesulfonyl fluoride, itself made through a SuFEx trifluoromethylation process, with IC50 = 1.1 μM and ~200-fold selectivity over the homologous neutrophil serine protease, cathepsin G. The optimized probe only modified active hNE and not its denatured form, setting another example of the “sleeping beauty” phenomenon of sulfur fluoride capturing agents for the discovery of covalent medicines. </p> </div> </div> </div>


Author(s):  
David J. Wilkinson

Serpins (serine proteinase inhibitors) are an ancient superfamily of structurally similar proteins, the majority of which use an elegant suicide inhibition mechanism to target serine proteinases. Despite likely evolving from a single common ancestor, the 36 human serpins have established roles regulating diverse biological processes, such as blood coagulation, embryonic development and extracellular matrix (ECM) turnover. Genetic mutations in serpin genes underpin a host of monogenic disorders — collectively termed the ‘serpinopathies’ — but serpin dysregulation has also been shown to drive pathological mechanisms in many common diseases. Osteoarthritis is a degenerative joint disorder, characterised by the progressive destruction of articular cartilage. This breakdown of the cartilage is driven by the metalloproteinases, and it has long been established that an imbalance of metalloproteinases to their inhibitors is of critical importance. More recently, a role for serine proteinases in cartilage destruction is emerging; including the activation of latent matrix metalloproteinases and cell-surface receptors, or direct proteolysis of the ECM. Serpins likely regulate these processes, as well as having roles beyond serine proteinase inhibition. Indeed, serpins are routinely observed to be highly modulated in osteoarthritic tissues and fluids by ‘omic analysis, but despite this, they are largely ignored. Confusing nomenclature and an underappreciation for the role of serine proteinases in osteoarthritis (OA) being the likely causes. In this narrative review, serpin structure, biochemistry and nomenclature are introduced, and for the first time, their putative importance in maintaining joint tissues — as well as their dysregulation in OA — are explored.


Sign in / Sign up

Export Citation Format

Share Document