porcine pancreatic elastase
Recently Published Documents


TOTAL DOCUMENTS

166
(FIVE YEARS 10)

H-INDEX

30
(FIVE YEARS 2)

Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2929
Author(s):  
Sun Young Jung ◽  
Gun-Dong Kim ◽  
Dae Woon Choi ◽  
Dong-Uk Shin ◽  
Ji-Eun Eom ◽  
...  

Chronic airway exposure to harmful substances, such as deleterious gases, cigarette smoke (CS), and particulate matter, triggers chronic obstructive pulmonary disease (COPD), characterized by impaired lung function and unbridled immune responses. Emerging epigenomic and genomic evidence suggests that excessive recruitment of alveolar macrophages and neutrophils contributes to COPD pathogenesis by producing various inflammatory mediators, such as reactive oxygen species (ROS), neutrophil elastase, interleukin (IL) 6, and IL8. Recent studies showed that Epilobium species attenuated ROS, myeloperoxidase, and inflammatory cytokine production in murine and human innate immune cells. Although the Epilobium genus exerts anti-inflammatory, antioxidant, and antimicrobial effects, the question of whether the Epilobium species regulate lung inflammation and innate immune response in COPD has not been investigated. In this study, Epilobium pyrricholophum extract (EPE) suppressed inflammatory cell recruitment and clinical symptoms in porcine pancreatic elastase and CS extract-induced COPD mice. In addition, EPE attenuated inflammatory gene expression by suppressing MAPKs and NFκB activity. Furthermore, UPLC-Q-TOF MS analyses revealed the anti-inflammatory effects of the identified phytochemical constituents of EPE. Collectively, our studies revealed that EPE represses the innate immune response and inflammatory gene expression in COPD pathogenesis in mice. These findings provide insights into new therapeutic approaches for treating COPD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mai Tsutsui ◽  
Chung Yan Cheung ◽  
Takeyuki Wada ◽  
Jen-erh Jaw ◽  
Cheng Wei Tony Yang ◽  
...  

AbstractEmphysema is a common phenotype of chronic obstructive pulmonary disease (COPD). Although resection of emphysematous tissue can improve lung mechanics, it is invasive and fraught with adverse effects. Meanwhile, radiofrequency (RF) treatment is an extracorporeal method that leads to tissue destruction and remodeling, resulting in “volume reduction” and overall improvement in lung compliance of emphysematous lungs. Whether these changes lead to improved exercise tolerance is unknown. Here, we investigated the effectiveness of RF treatment to improve the exercise capacity of mice with emphysema. Fifty-two mice (7 weeks of age) were used in this experiment. A bilateral emphysema model was created by intratracheally instilling porcine pancreatic elastase (PPE) (1.5U/100 g body weight). RF treatment (0.5 W/ g body weight) was administered extracorporeally 14 days later and mice were sacrificed after another 21 days. The exercise capacity of mice was measured using a treadmill. Treadmill runs were performed just before PPE instillation (baseline), before RF treatment and before sacrifice. Following sacrifice, lung compliance and mean linear intercept (Lm) were measured and fibrosis was assessed using a modified Ashcroft score. There were 3 experimental groups: controls (instilled with saline, n = 12), emphysema (instilled with porcine pancreatic elastase, PPE, n = 11) and emphysema + treatment (instilled with PPE and given RF, n = 9). At endpoint, the maximum velocity of the emphysema + treatment group was significantly higher than that of the emphysema group, indicating improved exercise tolerance (86.29% of baseline vs 61.69% of baseline, p = 0.01). Histological analysis revealed a significant reduction in emphysema as denoted by Lm between the two groups (median 29.60 µm vs 35.68 µm, p = 0.03). The emphysema + treatment group also demonstrated a higher prevalence of lung fibrosis (≧Grade 3) compared with the emphysema group (11.7% vs 5.4%, p < 0.01). No severe adverse events from RF were observed. RF treatment improved the exercise capacity of mice with emphysema. These data highlight the therapeutic potential of RF treatment in improving the functional status of patients with COPD.


Author(s):  
Gabor Gäbel ◽  
Bernd H. Northoff ◽  
Amanda Balboa ◽  
Mediha Becirovic‐ Agic ◽  
Marcelo Petri ◽  
...  

Background While numerous interventions effectively interfered with abdominal aortic aneurysm (AAA) formation/progression in preclinical models, none of the successes translated into clinical success. Hence, a systematic exploration of parallel and divergent processes in clinical AAA disease and its 2 primary models (the porcine pancreatic elastase and angiotensin‐II infusion [AngII] murine model) was performed to identify mechanisms relevant for aneurysm disease. Methods and Results This study combines Movat staining and pathway analysis for histological and genomic comparisons between clinical disease and its models. The impact of a notable genomic signal for metabolic reprogramming was tested in a rescue trial (AngII model) evaluating the impact of 1‐(4‐pyridinyl)‐3‐(2‐quinolinyl)‐2‐propen‐1‐one (PFK15)‐mediated interference with main glycolytic switch PFKFB3. Histological evaluation characterized the AngII model as a dissection model that is accompanied by adventitial fibrosis. The porcine pancreatic elastase model showed a transient inflammatory response and aortic dilatation, followed by stabilization and fibrosis. Normalization of the genomic responses at day 14 confirmed the self‐limiting nature of the porcine pancreatic elastase model. Clear parallel genomic responses with activated adaptive immune responses, and particularly strong signals for metabolic switching were observed in human AAA and the AngII model. Rescue intervention with the glycolysis inhibitor PFK15 in the AngII model showed that interference with the glycolytic switching quenches aneurysm formation. Conclusions Despite clear morphological contrasts, remarkable genomic parallels exist for clinical AAA disease and the AngII model. The metabolic response appears causatively involved in AAA progression and provides a novel therapeutic target. The clear transient genomic response classifies the porcine pancreatic elastase model as a disease initiation model.


2021 ◽  
Vol 7 (8) ◽  
pp. 130
Author(s):  
Richa Gandhi ◽  
Joanna Koch-Paszkowski ◽  
Charalampos Tsoumpas ◽  
Marc A. Bailey

The porcine pancreatic elastase (PPE) model is a common preclinical model of abdominal aortic aneurysms (AAA). Some notable characteristics of this model include the low aortic rupture rate, non-progressive disease course, and infra-renal AAA formation. Enhanced [18F]fluorothymidine ([18F]FLT) uptake on positron emission tomography/computed tomography (PET/CT) has previously been reported in the angiotensin II-induced murine model of AAA. Here, we report our preliminary findings of investigating [18F]FLT uptake in the PPE murine model of AAA. [18F]FLT uptake was found to be substantially increased in the abdominal areas recovering from the surgery, whilst it was not found to be significantly increased within the PPE-induced AAA, as confirmed using in vivo PET/CT and ex vivo whole-organ gamma counting (PPE, n = 7; controls, n = 3). This finding suggests that the [18F]FLT may not be an appropriate radiotracer for this specific AAA model, and further studies with larger sample sizes are warranted to elucidate the pathobiology contributing to the reduced uptake of [18F]FLT in this model.


2021 ◽  
Author(s):  
Mai Tsutsui ◽  
Chung Yan Cheung ◽  
Takeyuki Wada ◽  
Jen-erh Jaw ◽  
Cheng Wei Tony Yang ◽  
...  

Abstract Background; Emphysema is a common phenotype of chronic obstructive pulmonary disease (COPD). Although resection of emphysematous tissue can improve lung mechanics, it is invasive and fraught with adverse effects. Meanwhile, radiofrequency (RF) treatment is an extracorporeal method that leads to tissue destruction and remodeling, resulting in “volume reduction” and overall improvement in lung compliance of emphysematous lungs. Whether these changes lead to improved exercise tolerance is unknown. Here, we investigated the effectiveness of RF treatment to improve the exercise capacity of mice with emphysema.Methods;Fifty-two mice (7 weeks of age) were used in this experiment. A bilateral emphysema model was created by intratracheally instilling porcine pancreatic elastase (PPE) (1.5U/100g body weight). RF treatment (0.5W/ g body weight) was performed extracorporeally 14 days later and mice were sacrificed after another 21 days. The exercise capacity of mice was measured using a treadmill. Treadmill runs were performed just before PPE instillation (baseline), before RF treatment and before sacrifice. Following sacrifice, lung compliance and mean linear intercept (Lm) were measured and fibrosis was assessed using a modified Ashcroft score.Results; There were 3 experimental groups: controls (instilled with saline, n=12), emphysema (instilled with porcine pancreatic elastase, PPE, n=11) and emphysema + treatment (instilled with PPE and given RF, n=9). At endpoint, the maximum velocity of the emphysema + treatment group was significantly higher than that of the emphysema group, indicating improved exercise tolerance (86.29% of baseline vs 61.69% of baseline, p=0.011). Histological analysis revealed a significant reduction in emphysema as denoted by Lm between the two groups (median 29.60 µm vs 35.68 µm, p=0.033). The emphysema + treatment group also demonstrated a higher prevalence of lung fibrosis (≧Grade 3) compared with the emphysema group (11.7% vs 5.4%, p<0.0001). No severe adverse events from RF were observed.Conclusion;RF treatment improved the exercise capacity of mice with emphysema. These data highlight the therapeutic potential of RF treatment in improving the functional status of patients with COPD.


Author(s):  
Norman C Peterson ◽  
Aaron A Berlin

A proposal for the use of porcine pancreatic elastase (PPE) to develop a mouse model of pulmonary emphysema raised concerns about introducing contaminating porcine viruses into our barrier facility. Porcine Circovirus (PCV) is a known contaminant of vaccines and cell cultures that have been exposed to porcine-derived reagents. Endemic infection of PCV3 in laboratory mice has been reported, and some evidence supports natural PCV infection in wild mice. PPE samples from 2 different vendors tested positive for DNA from both PCV2 and 3. To allow model development with these reagents to proceed, we developed a protocol that would meet scientific objectives, minimize exposure of mice, and provide information on the potential for the virus to spread. Five d after BALB/c mice received intralaryngeal administration of PPE, lungs were harvested and analyzed for evidence of disease. Tissues from other major organs were submitted to test for disseminated PCV2 and 3 DNA. Similarly, tissues (including lungs) from direct contact nude sentinel mice were analyzed for the presence of the virus. To evaluate the possibility of endemic PCV2/3 infection, we also surveyed non-porcine reagent exposed mice on other studies. PCV2 and 3 was not detected in any of the tissues submitted. Although this study provided no evidence of infection and transmission of PCV2/3 from the contaminated PPE sample over the 5 d study, further work is needed to understand the risks and impact of introducing PCV contaminated cells or reagents into barrier maintained rodent colonies.


Sign in / Sign up

Export Citation Format

Share Document