An in vitro model of hematopoietic stem cell homing demonstrates rapid homing and maintenance of engraftable stem cells

Blood ◽  
2001 ◽  
Vol 98 (4) ◽  
pp. 1012-1018 ◽  
Author(s):  
Angela E. Frimberger ◽  
Allen I. Stering ◽  
Peter J. Quesenberry

Hematopoietic stem cell (HSC) homing is believed to rely heavily on adhesion interactions between stem cells and stroma. An in vitro assay was developed for adhesion of engraftable HSCs in bone marrow suspensions to pre-established Dexter-type long-term bone marrow culture stromal layers. The cell numbers in the adherent layer and supernatant were examined, along with the engraftment capability of adherent layer cells to indicate the number of HSCs that homed to in vitro stroma. The cell number in the supernatant declined over the 24-hour period. The number of test cells adhering to the stromal layer increased during the first hour and then fell at 6 and 24 hours. The number of test HSCs adhering to the stromal layer was substantial at 20 minutes, increased during the first hour, and then remained constant at 1, 6, and 24 hours of adhesion. These data indicate that adhesion of engraftable HSCs occurs quickly and increases during the first hour of contact with pre-established stroma, that adhesion plateaus within 1 hour of contact, and that HSCs maintain their engraftment capability for at least 24 hours of stromal adhesion. Long-term engraftment from test cells at more than 1 hour of adhesion represents 70.7% of the predicted engraftment from equivalent numbers of unmanipulated marrow cells, indicating that 2 of 3 test engraftable HSCs adhered. These findings demonstrate the usefulness of this model system for studying stem-stromal adhesion, allowing further dissection of the mechanism of HSC homing and exploration of possible manipulations of the process.

Blood ◽  
2018 ◽  
Vol 132 (7) ◽  
pp. 735-749 ◽  
Author(s):  
Simranpreet Kaur ◽  
Liza J. Raggatt ◽  
Susan M. Millard ◽  
Andy C. Wu ◽  
Lena Batoon ◽  
...  

Key Points Recipient macrophages persist in hematopoietic tissues and self-repopulate via in situ proliferation after syngeneic transplantation. Targeted depletion of recipient CD169+ macrophages after transplant impaired long-term bone marrow engraftment of hematopoietic stem cells.


Blood ◽  
2015 ◽  
Vol 125 (17) ◽  
pp. 2678-2688 ◽  
Author(s):  
Marisa Bowers ◽  
Bin Zhang ◽  
Yinwei Ho ◽  
Puneet Agarwal ◽  
Ching-Cheng Chen ◽  
...  

Key Points Bone marrow OB ablation leads to reduced quiescence, long-term engraftment, and self-renewal capacity of hematopoietic stem cells. Significantly accelerated leukemia development and reduced survival are seen in transgenic BCR-ABL mice following OB ablation.


Blood ◽  
1995 ◽  
Vol 85 (4) ◽  
pp. 952-962 ◽  
Author(s):  
JC van der Loo ◽  
WA Slieker ◽  
D Kieboom ◽  
RE Ploemacher

Monoclonal antibody ER-MP12 defines a novel antigen on murine hematopoietic stem cells. The antigen is differentially expressed by different subsets in the hematopoietic stem cell compartment and enables a physical separation of primitive long-term repopulating stem cells from more mature multilineage progenitors. When used in two-color immunofluorescence with ER-MP20 (anti-Ly-6C), six subpopulations of bone marrow (BM) cells could be identified. These subsets were isolated using magnetic and fluorescence-activated cell sorting, phenotypically analyzed, and tested in vitro for cobblestone area-forming cells (CAFC) and colony-forming units in culture (CFU-C; M/G/E/Meg/Mast). In addition, they were tested in vivo for day-12 spleen colony-forming units (CFU-S-12), and for cells with long-term repopulating ability using a recently developed alpha-thalassemic chimeric mouse model. Cells with long-term repopulation ability (LTRA) and day-12 spleen colony-forming ability appeared to be exclusively present in the two subpopulations that expressed the ER-MP12 cell surface antigen at either an intermediate or high level, but lacked the expression of Ly- 6C. The ER-MP12med20- subpopulation (comprising 30% of the BM cells, including all lymphocytes) contained 90% to 95% of the LTRA cells and immature day-28 CAFC (CAFC-28), 75% of the CFU-S-12, and very low numbers of CFU-C. In contrast, the ER-MP12hi20- population (comprising 1% to 2% of the BM cells, containing no mature cells) included 80% of the early and less primitive CAFC (CAFC-5), 25% of the CFU-S-12, and only 10% of the LTRA cells and immature CAFC-28. The ER-MP12hi cells, irrespective of the ER-MP20 antigen expression, included 80% to 90% of the CFU-C (day 4 through day 14), of which 70% were ER-MP20- and 10% to 20% ER-MP20med/hi. In addition, erythroblasts, granulocytes, lymphocytes, and monocytes could almost be fully separated on the basis of ER-MP12 and ER-MP20 antigen expression. Functionally, the presence of ER-MP12 in a long-term BM culture did not affect hematopoiesis, as was measured in the CAFC assay. Our data demonstrate that the ER-MP12 antigen is intermediately expressed on the long-term repopulating hematopoietic stem cell. Its level of expression increases on maturation towards CFU-C, to disappear from mature hematopoietic cells, except from B and T lymphocytes.


Blood ◽  
2000 ◽  
Vol 96 (9) ◽  
pp. 3016-3022 ◽  
Author(s):  
Yi Zhao ◽  
Yuanguang Lin ◽  
Yuxia Zhan ◽  
Gengjie Yang ◽  
Jeffrey Louie ◽  
...  

Using 5-color fluorescence-activated cell sorting, we isolated a subset of murine pluripotent hematopoietic stem cells (PHSC) with the phenotype Lin− Sca+ kit+CD38+ CD34− that appears to fulfill the criteria for most primitive PHSC. In the presence of whole bone marrow (BM) competitor cells, these cells produced reconstitution in lethally irradiated primary, secondary, and tertiary murine transplant recipients over the long term. However, these cells alone could not produce reconstitution in lethally irradiated recipients. Rapid proliferation of these cells after BM transplantation required the assistance of another BM cell subset, which has the phenotype Lin− Sca+ kit+ CD38−CD34+.


Blood ◽  
1987 ◽  
Vol 69 (3) ◽  
pp. 804-808 ◽  
Author(s):  
SD Rowley ◽  
SJ Sharkis ◽  
C Hattenburg ◽  
LL Sensenbrenner

Abstract The investigation of human hematopoiesis is limited by the lack of an in vitro assay for the most primitive hematopoietic stem cell. In this report, we describe the culture from normal human bone marrow of unique colonies of morphologically immature cells with scanty, agranular, cytoplasm and a primitive nucleus with nucleoli. These “blast” cells demonstrate a significant ability for the generation of secondary colonies of multiple lineages, including additional blast cell colonies. These colonies are detected at various times during the culture period of up to 28 days. Neither the time of appearance in primary culture nor any feature of the morphological appearance of the blast cells is correlated with replating ability or the differentiation pathway followed. The progenitor cell giving rise to these colonies may represent the earliest pluripotent hematopoietic stem cell yet grown in culture.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1688-1688 ◽  
Author(s):  
Noriko Miyake ◽  
Ann C.M. Brun ◽  
Mattias Magnusson ◽  
David T. Scadden ◽  
Stefan Karlsson

Abstract Hox transcription factors have emerged as important regulators of hematopoiesis. In particular, enforced expression of HOXB4 is a potent stimulus for murine hematopoietic stem cell (HSC) self-renewal. Murine HSCs engineered to overexpress HoxB4 expand significantly more than control cells in vivo and ex vivo while maintaining a normal differentiation program. HSCs are regulated by the cell proliferation machinery that is intrinsically controlled by cyclin-dependent kinase inhibitors such as p21Cip1/Waf1(p21) and p27Kip1 (p27). The p21 protein restricts cell cycling of the hematopoietic stem cell pool and maintains hematopoietic stem cell quiescence. In order to ask whether enhanced proliferation due to HOXB4 overexpression is mediated through suppression of p21 we overexpressed HOXB4 in hematopoietic cells from p21−/− mice. First, we investigated whether human HOXB4 enhances in vitro expansion of BM cells from p21−/− mice compared to p21+/+ mice. 5FU treated BM cells from p21−/− or p21+/+ mice were pre-stimulated with SCF, IL-6, IL-3 for 2 days followed by transduction using retroviral vector expressing HOXB4 together with GFP (MIGB4) or the control GFP vector (MIG). The cells were maintained in suspension cultures for 13 days and analyzed for GFP positive cells by flow-cytometry. Compared to MIG transduced BM cells from p21+/+ mice (MIG/p21+), the numbers of GFP positive cells were increased 1.1-fold in MIG/p21−, 3.2-fold in MIGB4/p21+ and 10.0-fold in MIGB4/p21− respectively (n=5). CFU assays were performed after 13 days of culture. The numbers of CFU were increased 4.8-fold in MIG/p21−, 19.5-fold in MIG/p21+ and 33.9 -fold in MIGB4/p21− respectively. Next, we evaluated level of HSCs expansion by bone marrow repopulation assays. After 12-days of culture, 1.5 x 105 MIGB4 or MIG-transduced cells (Ly5.2) were transplanted into lethally irradiated mice in combination with 8 x 105 fresh Ly5.1 bone marrow cells. Sixteen weeks after transplantation, no Ly5.2 cells could be detected in MIG/p21+ or MIG/p21− transplanted mice (n=6). In contrast, Ly5.2 positive cells were detected in both MIGB4/p21+/+ and MIGB4/p21−/− cells. The % of Ly5.2 positive cells in MIGB4/p21− transplanted mice was 9.9-fold higher than MIGB4/p21+ transplanted mice. (38.4 % vs 3.9 %, P<0.02, n=5). These Ly5.2 positive cells differentiated into all lineages, as determined by proportions of Mac-1, B-220, CD3 and Ter119 positive populations. Currently, we are enumerating the expansion of HOXB4 transduced HSCs in p21 deficient BM cells using the CRU assay. Our findings suggest that HOXB4 increases the self-renewal of hematopoietic stem cells by a mechanism that is independent of p21. In addition, the findings demonstrate that deficiency of p21 in combination with enforced expression of HOXB4 can be used to rapidly and effectively expand hematopoietic stem cells.


Blood ◽  
1987 ◽  
Vol 69 (3) ◽  
pp. 804-808 ◽  
Author(s):  
SD Rowley ◽  
SJ Sharkis ◽  
C Hattenburg ◽  
LL Sensenbrenner

The investigation of human hematopoiesis is limited by the lack of an in vitro assay for the most primitive hematopoietic stem cell. In this report, we describe the culture from normal human bone marrow of unique colonies of morphologically immature cells with scanty, agranular, cytoplasm and a primitive nucleus with nucleoli. These “blast” cells demonstrate a significant ability for the generation of secondary colonies of multiple lineages, including additional blast cell colonies. These colonies are detected at various times during the culture period of up to 28 days. Neither the time of appearance in primary culture nor any feature of the morphological appearance of the blast cells is correlated with replating ability or the differentiation pathway followed. The progenitor cell giving rise to these colonies may represent the earliest pluripotent hematopoietic stem cell yet grown in culture.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 564-564 ◽  
Author(s):  
Dan S. Kaufman ◽  
Petter S. Woll ◽  
Colin H. Martin ◽  
Jon L. Linehan ◽  
Xinghui Tian

Abstract We have previously described methods to use either stromal cell co-culture or embryoid-body (EB) formation to support the hematopoietic development of undifferentiated human ES cells (both H1 and H9 cell lines). Either FBS-based media or serum-free media with specific cytokines can be used to derive CD34+ cells, CD45+ cells and hematopoietic progenitors as identified by colony-forming cell (CFC) assays that give rise to mature myeloid, erythroid, and megakaryocytic cells. Genes such as RUNX1, HOXB4, TAL1, and GATA2, all known to be expressed during early hematopoiesis are up-regulated during hematopoietic differentiation of human ES cells. Here, we advance these studies to demonstrate that human ES cell-derived CD34+ cells function as early hematopoietic precursors in surrogate hematopoietic stem cell (HSC) assays. The long-term culture initiating cell (LTC-IC) assay is commonly used to quantify hematopoietic precursors that can be maintained in culture for 5 or more weeks. Human cord blood (CB)-derived CD34+ cells have a LTC-IC frequency of approximately 1:30. We demonstrate LTC-ICs can also be identified from human ES cell-derived CD34+ at a frequency of approximately 1:400. These results suggest CD34+ cells from human ES cells are more heterogeneous than CD34+ cells from CB. Furthermore, we now demonstrate in vitro culture of human ES cell-derived CD34+ cells identify these cells as lymphocyte precursors. Here, we used a natural killer (NK) cell-initiating cell assay (NK-IC) where CD34+ cells are cultured on AFT024 stromal cells in media containing IL15, IL7, and other defined cytokines for 2–4 weeks. Under these conditions, both CB and human ES cell-derived cells give rise to lymphoid cells (NK cells) with over 40% CD45+CD56+ cells. Under alternative culture conditions, CD3+ T cells can also be produced from CD34+ human ES cell-derived cells. Therefore, CD34+ cells derived from human ES cells represent both myeloid and lymphoid precursor cells. Since it is not possible to define a HSC population based solely on in vitro assays, we have examined the potential for human ES cell-derived hematopoietic cells to engraft in sublethally irradiated NOD/SCID mice. Detection of scid-repopulating cells (SRCs) are considered a better surrogate for HSCs. Bone marrow, peripheral blood, and splenocytes were examined for human CD34+ and CD45+ cells 3–6 months after injection of human ES cell-derived blood cells. PCR for human chromosome 17-specific alpha-satellite DNA was also done to confirm the presence of human cells in all mice showing evidence of engraftment. We consistently find stable engraftment with 0.5–3% human CD45+ cells in the bone marrow of these mice. To better define these cells as HSCs, secondary transplants also demonstrate stable engraftment. Importantly, no teratomas are demonstrated in mice injected with differentiated human ES cells. These results demonstrate that HSCs with long-term engraftment and multi-lineage potential can be routinely and efficiently generated from human ES cells.


Blood ◽  
2000 ◽  
Vol 96 (9) ◽  
pp. 3016-3022 ◽  
Author(s):  
Yi Zhao ◽  
Yuanguang Lin ◽  
Yuxia Zhan ◽  
Gengjie Yang ◽  
Jeffrey Louie ◽  
...  

Abstract Using 5-color fluorescence-activated cell sorting, we isolated a subset of murine pluripotent hematopoietic stem cells (PHSC) with the phenotype Lin− Sca+ kit+CD38+ CD34− that appears to fulfill the criteria for most primitive PHSC. In the presence of whole bone marrow (BM) competitor cells, these cells produced reconstitution in lethally irradiated primary, secondary, and tertiary murine transplant recipients over the long term. However, these cells alone could not produce reconstitution in lethally irradiated recipients. Rapid proliferation of these cells after BM transplantation required the assistance of another BM cell subset, which has the phenotype Lin− Sca+ kit+ CD38−CD34+.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2315-2315 ◽  
Author(s):  
Pauline Rimmele ◽  
Carolina L. Bigarella ◽  
Valentina d'Escamard ◽  
Brigitte Izac ◽  
David Sinclair ◽  
...  

Abstract Abstract 2315 SIRT1 is a member of the NAD-dependent family of sirtuin deacetylases with critical functions in cellular metabolism, response to stress and aging. Although SIRT1 is clearly a regulator of embryonic stem cells, reports on the function of SIRT1 in adult hematopoietic stem cell (HSC) have been conflicting. While SIRT1 was positively associated with HSC activity on a genetic screen, using a germline deletion of SIRT1 three groups found SIRT1 to be dispensable for adult HSC. Here, we first showed that nuclear SIRT1 expression is enriched in bone marrow-derived Lin−Sca1+cKit+ (LSK) cells, as compared to total bone marrow cells. Germline deletion of SIRT1 is associated with developmental defects and high perinatal mortality resulting in only 10% of mice reaching adulthood. To circumvent the potential developmental adaptation of these mice, we used an adult-tamoxifen inducible SIRT1 knockout mouse model. Full-length SIRT1 protein was nearly undetectable in the bone marrow and spleen of SIRT1−/− mice. Analysis of wild type and SIRT1−/− bone marrow cells, 4 weeks after tamoxifen treatment, showed that loss of SIRT1 increased the size and frequency of the LSK compartment. Interestingly, this was associated with a significant decrease in the frequency of long-term repopulating HSC as determined by SLAM markers (CD48−CD150+LSK) within LSK cells. This decrease was even more pronounced with time. In agreement with these results, the long-term repopulation ability of CD48−CD150+LSK cells is severely compromised in SIRT1−/− mice as measured 16 weeks after transplantation, strongly suggesting that SIRT1 is essential for long-term HSC function. Thus, loss of SIRT1 results in loss of long-term repopulating stem cells in favor of total LSK cells that is a more heterogeneous population of stem cells. SIRT1 has several substrates with a potential function in HSC. Among these, we focused on Foxo3 Forkhead transcription factor which is essential for the maintenance of hematopoietic and leukemic stem cell pool. Despite the importance of Foxo3 to the control of HSC function, mechanisms that regulate Foxo3 activity in HSC remain unknown. Negative regulation of FoxOs by AKT phosphorylation promotes their cytosolic localization in response to growth factors stimulation. Interestingly, Foxo3 is constitutively nuclear in bone marrow LSK and in leukemic stem cells, strongly suggesting that negative phosphorylation may not be the sole Foxo3 regulatory mechanism in these stem cells. FoxO proteins are regulated by several post-translational modifications including acetylation in addition to phosphorylation, although the impact of acetylation on Foxo3 function remains unresolved. Therefore, we asked whether regulation of adult HSC activity by SIRT1 deacetylase is mediated by Foxo3. The in vivo injection of sirtinol, a SIRT1 inhibitor, for 3 weeks compromised significantly the long-term repopulation capacity of wild type but not Foxo3−/− HSC as measured by the repopulation ability of CD48−CD150+LSK cells in lethally irradiated mice after 16 weeks. These results suggest that Foxo3 is likely to be required for SIRT1 regulation of HSC activity. In agreement with this, we showed that in contrast to wild type LSK cells, Foxo3 is mostly cytoplasmic in SIRT1−/− LSK cells, indicating that loss of SIRT1 is sufficient to translocate Foxo3 to the cytosol and presumably inhibit its activity. We further showed that ectopically expressed acetylation-mimetic mutant of Foxo3 where all putative acetyl-lysine residues are mutated to glutamine, in bone marrow mononuclear cells, is mostly localized in the cytosol in contrast to wild type Foxo3 protein and results in significant decrease of colony-forming unit-spleen (CFU-S) activity. Using pharmacological antagonism as well as conditional deletion of SIRT1 in adult HSC, we identified a critical function for SIRT1 in the regulation of long-term HSC activity. Our results contrast with previously published data obtained from germline deleted SIRT1 mice, and suggest that the use of a conditional approach is essential for unraveling SIRT1 function in adult tissues. Our data also suggest that SIRT1 regulation of HSC activity is through activation of Foxo3. These findings are likely to have an important impact on our understanding of the regulation of hematopoietic and leukemic stem cells and may be of major therapeutic value for hematological malignancies and disorders of stem cells and aging. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document