scholarly journals Comparison of 2-year outcomes with CAR T cells (ZUMA-1) versus salvage chemotherapy in refractory large B-cell lymphoma

Author(s):  
Sattva S. Neelapu ◽  
Frederick L. Locke ◽  
Nancy L. Bartlett ◽  
Lazaros John Lekakis ◽  
Patrick Reagan ◽  
...  

The SCHOLAR-1 international retrospective study highlighted poor clinical outcomes and survival among patients with refractory large B-cell lymphoma (LBCL) treated with conventional chemotherapy. Axicabtagene ciloleucel (axi-cel), an autologous anti-CD19 chimeric antigen receptor T-cell therapy, demonstrated durable responses in patients with refractory LBCL in the pivotal phase 1/2 ZUMA-1 study (NCT02348216). Here, we compared SCHOLAR-1 with the 2 year outcomes of ZUMA-1. Prior to comparison of clinical outcomes, propensity scoring (based on a broad set of prognostic covariates) was used to create balance between ZUMA-1 and SCHOLAR-1 patients. In the pivotal phase 2 portion of ZUMA-1, 101 patients received axi-cel and were evaluable for response and survival. In SCHOLAR-1, 434 and 424 patients were evaluable for response and survival, respectively. ZUMA-1 patients were more heavily pretreated than SCHOLAR-1 patients. The median follow-up was 27.1 months in ZUMA-1. The objective response rate and complete response rate were 83% and 54% in ZUMA 1 vs 34% and 12% in SCHOLAR-1, respectively. The 2-year survival rate was 54% in ZUMA-1 and 20% in SCHOLAR-1, and a 73% reduction in the risk of death was observed in ZUMA-1 vs SCHOLAR-1. These results were consistent with those of an additional standardization analysis in which strata were limited to 2 prognostic factors (refractory categorization and presence/absence of stem cell transplant after refractoriness to chemotherapy) to conserve sample size. Despite the limitations of a nonrandomized analysis, these results indicate that axi-cel produces durable responses and a substantial survival benefit versus non-CAR T-cell salvage regimens for patients with refractory LBCL.

2019 ◽  
Vol 37 ◽  
pp. 301-301 ◽  
Author(s):  
C. Thieblemont ◽  
S. Le Gouill ◽  
R. Di Blasi ◽  
G. Cartron ◽  
F. Morschhauser ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5821-5821
Author(s):  
David G. Maloney ◽  
Fei Fei Liu ◽  
Lisette Nientker ◽  
Cathelijne Alleman ◽  
Brian Hutton ◽  
...  

Introduction: Large B-cell lymphoma (LBCL) is the most common subtype of non-Hodgkin lymphoma. Frontline treatment is curative in ~60% of patients (pts); however, ~30% of pts relapse and ~10% are refractory to frontline treatment. Treatment options for pts with relapsed/refractory (R/R) disease, especially in the third-line or greater (3L+) setting, have been primarily salvage chemotherapies (CTs). Recently, 2 CAR T cell products, axicabtagene ciloleucel (Yescarta®) and tisagenlecleucel (Kymriah®), and the antibody-drug conjugate, polatuzumab vedotin (Polivy®), were approved in the 3L setting. A systematic literature review (SLR) of R/R LBCL was conducted to identify relevant evidence on clinical outcomes in LBCL pts, including these new therapies, within the second-line and greater (2L+) or 3L+ setting, and to define the unmet medical need. Methods: This SLR was conducted in accordance with the Cochrane Handbook for Systematic Reviews of Interventions and European Union Health Technology Assessment requirements. The review identified randomized and nonrandomized/observational studies within R/R LBCL, including diffuse large B-cell lymphoma (DLBCL), follicular lymphoma grade 3B (FL3B), primary mediastinal large B-cell lymphoma (PMBCL), DLBCL transformed from indolent lymphomas, and R/R DLBCL with secondary central nervous system (SCNS) involvement. Sources were EMBASE, MEDLINE, The Cochrane Library, and clinical conferences (ASCO, ESMO, EHA, ASH, ICML, AACR, and EORTC) from Jan 2000 to Apr 2019. Results : Following screening of 8683 database records and additional sources, 103 publications covering 78 unique studies were identified. Studies identified were characterized by line of treatment and R/R LBCL subtype (Figure). OS, PFS, DOR, OR, and safety observed from the identified studies were described. Disease subtypes, pt eligibility criteria, and length of follow-up varied notably across studies. In the 3L+ population, 11 salvage CT and 2 CAR T cell therapy studies reported survival outcomes. With salvage CT, the reported ORR across studies ranged from 0% to 54%, while CR ranged from 5.6%-31%. Median OS (mOS) ranged between 3-9 months, with one outlying study reporting mOS at 20 months. Median PFS (mPFS) reported within the salvage CT studies ranged from 2-6 months. Among CAR T cell therapies, pts treated with axicabtagene ciloleucel (n=101) reported a CR rate of 58% and median DOR (mDOR) was 11.1 months after a median follow-up of 27.1 months. mPFS was 5.9 months and mOS was not reached. At a median follow-up of 19.3 months, pts treated with tisagenlecleucel (n=115) had a CR of 40% but the mDOR was not reached. mOS was 11.1 months for all infused patients. In the 2L+ transplant-eligible population (36 studies), pts who received high-dose CT + HSCT achieved mOS between 9 months to 5 years. In the transplant noneligible population, 16 studies reported mOS between 3-20 months. Studies involving mixed transplant-eligible and noneligible populations (30 studies) reported mOS of 1-17 months. A few studies with limited sample sizes were found to report outcomes in LBCL subtypes (eg, PMBCL, SCNS lymphoma, DLBCL transformed from non-FL indolent lymphoma, FL3B). In the 3L+ setting, 1 study reported that mOS was not reached after a median of 6.6 months. In the 2L+ setting, 4 studies reported mPFS and mOS outcomes ranging between 2-9 months and 10-16 months, respectively. Among studies assessing safety of salvage CTs in R/R LBCL, neutropenia, leukocytopenia, thrombocytopenia, and infections were the most commonly reported adverse events (AEs), with neutropenia being the most reported. Among the 3 studies reporting safety outcomes of CAR T cell therapy, data suggest that hematologic AEs (possibly related to lymphodepleting CT), cytokine release syndrome, and neurotoxicity are the most reported. Conclusions : Despite the availability of new therapies for 2L+ and 3L + LBCL, examination of the current evidence has shown that there exists a high unmet need for additional therapeutic options that provide favorable benefit/risk and durable response for these patients. Furthermore, limited data are available for the rarer subtypes of LBCL. Both findings represent important treatment gaps for R/R LBCL that must be addressed in future research geared toward improvement of the current treatment landscape. Disclosures Maloney: Juno Therapeutics: Honoraria, Patents & Royalties: patients pending , Research Funding; Celgene,Kite Pharma: Honoraria, Research Funding; BioLine RX, Gilead,Genentech,Novartis: Honoraria; A2 Biotherapeutics: Honoraria, Other: Stock options . Liu:Celgene Corporation: Employment. Nientker:Celgene Corporation: Consultancy; Pharmerit Cöoperatief U.A.: Employment. Alleman:Pharmerit Cöoperatief U.A.: Employment; Celgene Corporation: Consultancy. Garcia:Celgene: Employment, Equity Ownership.


2021 ◽  
Vol 5 (19) ◽  
pp. 3789-3793
Author(s):  
Susanne Jung ◽  
Jochen Greiner ◽  
Stephanie von Harsdorf ◽  
Pavle Popovic ◽  
Roland Moll ◽  
...  

Abstract Treatment with CD19-directed (CAR) T cells has evolved as a standard of care for multiply relapsed or refractory large B-cell lymphoma (r/r LBCL). A common side effect of this treatment is the immune effector cell–associated neurotoxicity syndrome (ICANS). Severe ICANS can occur in up to 30% to 40% of patients treated with axicabtagene-ciloleucel (axi-cel), usually within the first 4 weeks after administration of the dose and usually responding well to steroids. We describe a case of progressive central neurotoxicity occurring 9 months after axi-cel infusion in a patient with r/r LBCL who had undergone a prior allogeneic hematopoietic cell transplant. Despite extensive systemic and intrathecal immunosuppression, neurological deterioration was inexorable and eventually fatal within 5 months. High CAR T-cell DNA copy numbers and elevated levels of interleukin-1 (IL-1) and IL-6 were found in the cerebral spinal fluid as clinical symptoms emerged, and CAR T-cell brain infiltration was observed on autopsy, suggesting that CAR T cells played a major pathogenetic role. This case of unexpected, devastating, late neurotoxicity warrants intensified investigation of neurological off-target effects of CD19-directed CAR T cells and highlights the need for continuous monitoring for late toxicities in this vulnerable patient population.


Author(s):  
Juskaran Chadha ◽  
Shafinaz Hussein ◽  
Yougen Zhan ◽  
Jonah Shulman ◽  
Joshua Brody ◽  
...  

We report a case of a 76-year-old male with a history of relapsed and refractory diffuse large B-cell lymphoma (DLBCL).Our patient was initially treated with front line chemotherapy along with central nervous system (CNS) prophylaxis with complete response. He subsequently relapsed, was sensitive to second-line chemotherapy, and underwent autologous stem cell transplantation achieving a complete remission. Only a few months after transplant, the patient suffered his second relapse and was deemed a candidate for Chimeric Antigen Receptor T-Cell Therapy (CAR-T). Given his aggressive disease, combined with the time needed to generate CAR-T cells, a multidisciplinary team recommended to treat our patient with liposomal vincristine in combination with rituximab as a bridge therapy. Durable responses have been seen using liposomal vincristine based on results from a recent phase II trial in heavily pretreated patients with DLBCL1. This therapy was effective in stabilizing and reducing active disease in our patient. This case looks to illustrate the use of liposomal vincristine in combination with immunotherapy in a novel setting bridging highly selected patients with active and refractory lymphoma prior to CAR-T. Moreover, we expanded an additional therapeutic point, highlighting the importance of optimal disease control prior to CAR-T cell harvesting, as recent literature has shown that residual malignant cells in the pheresis product may be inadvertently be transfected with the CAR gene, resulting in resistance and further relapse2.


2019 ◽  
Vol 25 (3) ◽  
pp. S182-S183 ◽  
Author(s):  
Noa G. Holtzman ◽  
Firas El Chaer ◽  
Pranshu Mohindra ◽  
Ashraf Badros ◽  
Saurabh Dahiya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document