scholarly journals Correction of CFTR function in intestinal organoids to guide treatment of cystic fibrosis

2020 ◽  
Vol 57 (1) ◽  
pp. 1902426 ◽  
Author(s):  
Anabela S. Ramalho ◽  
Eva Fürstová ◽  
Annelotte M. Vonk ◽  
Marc Ferrante ◽  
Catherine Verfaillie ◽  
...  

RationaleGiven the vast number of cystic fibrosis transmembrane conductance regulator (CFTR) mutations, biomarkers predicting benefit from CFTR modulator therapies are needed for subjects with cystic fibrosis (CF).ObjectivesTo study CFTR function in organoids of subjects with common and rare CFTR mutations and evaluate correlations between CFTR function and clinical data.MethodsIntestinal organoids were grown from rectal biopsies in a cohort of 97 subjects with CF. Residual CFTR function was measured by quantifying organoid swelling induced by forskolin and response to modulators by quantifying organoid swelling induced by CFTR correctors, potentiator and their combination. Organoid data were correlated with clinical data from the literature.ResultsAcross 28 genotypes, residual CFTR function correlated (r2=0.87) with sweat chloride values. When studying the same genotypes, CFTR function rescue by CFTR modulators in organoids correlated tightly with mean improvement in lung function (r2=0.90) and sweat chloride (r2=0.95) reported in clinical trials. We identified candidate genotypes for modulator therapy, such as E92K, Q237E, R334W and L159S. Based on organoid results, two subjects started modulator treatment: one homozygous for complex allele Q359K_T360K, and the second with mutation E60K. Both subjects had major clinical benefit.ConclusionsMeasurements of residual CFTR function and rescue of function by CFTR modulators in intestinal organoids correlate closely with clinical data. Our results for reference genotypes concur with previous results. CFTR function measured in organoids can be used to guide precision medicine in patients with CF, positioning organoids as a potential in vitro model to bring treatment to patients carrying rare CFTR mutations.

2021 ◽  
Vol 8 ◽  
Author(s):  
Eyleen de Poel ◽  
Sacha Spelier ◽  
Ricardo Korporaal ◽  
Ka Wai Lai ◽  
Sylvia F. Boj ◽  
...  

Cystic fibrosis transmembrane conductance regulator (CFTR) modulators have transformed the treatment of cystic fibrosis (CF) by targeting the basis of the disease. In particular, treatment regimen consisting of multiple compounds with complementary mechanisms of action have been shown to result in optimal efficacy. Here, we assessed the efficacy of combinations of the CFTR modulators ABBV/GLPG-2222, GLPG/ABBV-2737 and ABBV/GLPG-2451, and compared it to VX-770/VX-809 in 28 organoid lines heterozygous for F508del allele and a class I mutation and seven homozygous F508del organoid lines. The combination ABBV/GLPG-2222/ABBV-2737/ABBV/GLPG-2451 showed increased efficacy over VX-770/VX-809 for most organoids, despite considerable variation in efficacy between the different organoid cultures. These differences in CFTR restoration between organoids with comparable genotypes underline the relevance of continuing to optimize the ABBV/GLPG‐Triple therapy, as well as the in vitro characterization of efficacy in clinically relevant models.


2021 ◽  
Vol 31 (2) ◽  
pp. 167-177
Author(s):  
E. L. Amelina ◽  
A. S. Efremova ◽  
Yu. L. Melyanovskaya ◽  
N. V. Bulatenko ◽  
T. B. Bukharova ◽  
...  

Intestinal current measurement (ICM) and forskolin-induced swelling (FIS) assay in human intestinal organoids from rectal biopsies of cystic fibrosis (CF) patients are the new functional tests for assessment of CFTR channel activity that are widely used in the leading laboratories worldwide for scientific and clinical studies.The aim of the study was to assess the use of the new functional tests in adult CF patients with identified N1303K and R334W CFTR gene variants.Methods. Rectal suction biopsies were obtained from the two CF patients aged 36 and 27 years with N1303K/3821delT and R334W/F508del CFTR mutations, respectively. Results of the ICM and FIS assay in intestinal organoids were compared to the clinical data.Results. ICM has demonstrated that R334W is a ‘mild’ genetic variant with high residual CFTR channel activity. At the same time, N1303K is a ‘severe’ genetic variant and leads to a severe loss of CFTR channel function. These findings correlate with the clinical data. CFTR modulators compensate for the reduced activity of the R334W CFTR variant, as shown by the FIS assay. But there was a limited response of the forskolin-stimulated organoids to VX-770 potentiator and VX-809 corrector in the cells with N1303K genetic variant.Conclusion. ICM and FIS assay in human intestinal organoids are reliable methods for quantification of CFTR channel activity. They can also predict the efficacy of the targeted therapy in CF patients in vivo.


2020 ◽  
Vol 25 (3) ◽  
pp. 192-197 ◽  
Author(s):  
Kaden Ridley ◽  
Michelle Condren

Elexacaftor-tezacaftor-ivacaftor is a newly approved triple-combination cystic fibrosis transmembrane conductance regulator (CFTR) modulating therapy that contains 2 correctors and a potentiator of the CFTR channel. Its labeled indication for use is for persons 12 years of age and older with at least 1 F508del mutation for the CFTR gene. This drug combination provides potential therapy to many patients who had previously been excluded from CFTR modulation therapy due to the nature of their genetic mutations. The efficacy demonstrated in clinical trials surpasses the currently available therapies related to lung function, quality of life, sweat chloride reduction, and reducing exacerbations. The most common adverse events seen in clinical trials included rash and headache, and laboratory monitoring is recommended to evaluate liver function. Continued evaluation of patient data is needed to confirm its long-term safety and efficacy. Elexacaftor-tezacaftor-ivacaftor is a monumental and encouraging therapy for cystic fibrosis; however, approximately 10% of the CF population are not candidates for this or any other CFTR modulation therapy.


Breathe ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. 210112
Author(s):  
Daniel H. Tewkesbury ◽  
Rebecca C. Robey ◽  
Peter J. Barry

The genetic multisystem condition cystic fibrosis (CF) has seen a paradigm shift in therapeutic approaches within the past decade. Since the first clinical descriptions in the 1930s, treatment advances had focused on the downstream consequences of a dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) chloride ion channel. The discovery of the gene that codes for CFTR and an understanding of the way in which different genetic mutations lead to disruption of normal CFTR function have led to the creation and subsequent licensing of drugs that target this process. This marks an important move towards precision medicine in CF and results from clinical trials and real-world clinical practice have been impressive. In this review we outline how CFTR modulator drugs restore function to the CFTR protein and the progress that is being made in this field. We also describe the real-world impact of CFTR modulators on both pulmonary and multisystem complications of CF and what this will mean for the future of CF care.


2005 ◽  
Vol 19 (12) ◽  
pp. 3038-3044 ◽  
Author(s):  
Louis Chukwuemeka Ajonuma ◽  
Lai Ling Tsang ◽  
Gui Hong Zhang ◽  
Connie Hau Yan Wong ◽  
Miu Ching Lau ◽  
...  

Abstract Ovarian hyperstimulation syndrome (OHSS) remains one of the most life-threatening and potentially fatal complications of assisted reproduction treatments, arising from excessive stimulation of the ovaries by exogenous gonadotropins administrated during in vitro fertilization procedures, which is characterized by massive fluid shift and accumulation in the peritoneal cavity and other organs, including the lungs and the reproductive tract. The pathogenesis of OHSS remains obscure, and no definitive treatments are currently available. Using RT-PCR, Western blot, and electrophysiological techniques we show that cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel expressed in many epithelia, is involved in the pathogenesis of OHSS. Upon ovarian hyperstimulation, rats develop OHSS symptoms, with up-regulated CFTR expression and enhanced CFTR channel activity, which can also be mimicked by administration of estrogen, but not progesterone, alone in ovariectomized rats. Administration of progesterone that suppresses CFTR expression or antiserum against CFTR to OHSS animals results in alleviation of the symptoms. Furthermore, ovarian hyperstimulation does not induce detectable OHSS symptoms in CFTR mutant mice. These findings confirm a critical role of CFTR in the pathogenesis of OHSS and may provide grounds for better assisted reproduction treatment strategy to reduce the risk of OHSS and improve in vitro fertilization outcome.


Author(s):  
E. Elson ◽  
Paula Capel ◽  
Jessica Haynes ◽  
Stephanie Duehlmeyer ◽  
Michelle Fischer ◽  
...  

This report describes a case of a 15-year-old male with cystic fibrosis caused by N1303K and Q493X cystic fibrosis transmembrane conductance regulator (CFTR) protein variants. In this case, CFTR modulators including tezacaftor/ivacaftor and subsequently elexacaftor/tezacaftor/ivacaftor were utilized and resulted in clinical stability and improvement.


2020 ◽  
Vol 34 (4) ◽  
pp. 573-580
Author(s):  
Saangyoung E. Lee ◽  
Zainab Farzal ◽  
M.Leigh Anne Daniels ◽  
Brian D. Thorp ◽  
Adam M. Zanation ◽  
...  

Background Cystic fibrosis (CF) is a genetic disease that may result in multiple systemic disorders and potentially fatal severe respiratory compromise. However, the advent of CF transmembrane conductance regulator (CFTR) modulators has changed the management of CF for patients with select mutations. Although clinical trials have highlighted increased pulmonary function and decreased exacerbations as a result of these novel therapies, their effect on the sinuses has not been well-described. Objective Our objective is to review the CFTR modulators to provide otolaryngologists, physicians who frequently care for patients with CF, a basic understanding of these drugs and their effects on chronic rhinosinusitis (CRS) in patients with CF. Methods The clinically approved and available CFTR modulators and specific indications for their use are reviewed. Additionally, a systematic review of these therapies and effects on CRS in CF was performed. Results Four Food and Drug Administration approved CFTR modulators are available for patients with CF. Current drugs are approved for gating, residual function, or F508del mutations. Multiple reports describe CFTR modulators’ increase in transepithelial ion transport in nasal epithelial cultures; however, clinical studies regarding effects of these modulators on sinonasal health are limited to 5 studies that present new data of the effects of CFTR modulators in CRS. Conclusions CFTR modulators have changed management of CF. Initial studies of these medications demonstrate promising results in CF; however, there is a paucity of literature describing the effect of CFTR modulators on CF-associated CRS, although initial results are encouraging.


Sign in / Sign up

Export Citation Format

Share Document