New reference equations: What changes in diffusing capacity for carbon monoxide interpretation?

Author(s):  
Tânia Duarte ◽  
Mafalda Silva ◽  
Catarina Rijo ◽  
Susana Sousa ◽  
Paula Duarte
CHEST Journal ◽  
2011 ◽  
Vol 140 (4) ◽  
pp. 678A
Author(s):  
Pavlos Michailopoulos ◽  
Paraskevi Argiropoulou ◽  
Ioannis Kioumis ◽  
Theofilos Pechlivanidis ◽  
Dionisios Spyratos ◽  
...  

2018 ◽  
Vol 52 (1) ◽  
pp. 1500677 ◽  
Author(s):  
Mathias Munkholm ◽  
Jacob Louis Marott ◽  
Lars Bjerre-Kristensen ◽  
Flemming Madsen ◽  
Ole Find Pedersen ◽  
...  

The aim of this study was to determine reference equations for the combined measurement of diffusing capacity of the lung for carbon monoxide (CO) and nitric oxide (NO) (DLCONO). In addition, we wanted to appeal for consensus regarding methodology of the measurement including calculation of diffusing capacity of the alveolo-capillary membrane (Dm) and pulmonary capillary volume (Vc).DLCONO was measured in 282 healthy individuals aged 18–97 years using the single-breath technique and a breath-hold time of 5 s (true apnoea period). The following values were used: 1) specific conductance of nitric oxide (θNO)=4.5 mLNO·mLblood−1·min−1·mmHg−1; 2) ratio of diffusing capacity of the membrane for NO and CO (DmNO/DmCO)=1.97; and 3) 1/red cell CO conductance (1/θCO)=(1.30+0.0041·mean capillary oxygen pressure)·(14.6/Hb concentration in g·dL−1).Reference equations were established for the outcomes of DLCONO, including DLCO and DLNO and the calculated values Dm and Vc. Independent variables were age, sex, height and age squared.By providing new reference equations and by appealing for consensus regarding the methodology, we hope to provide a basis for future studies and clinical use of this novel and interesting method.


2008 ◽  
Vol 104 (4) ◽  
pp. 1094-1100 ◽  
Author(s):  
Sylvia Verbanck ◽  
Daniel Schuermans ◽  
Sophie Van Malderen ◽  
Walter Vincken ◽  
Bruce Thompson

It has long been assumed that the ventilation heterogeneity associated with lung disease could, in itself, affect the measurement of carbon monoxide transfer factor. The aim of this study was to investigate the potential estimation errors of carbon monoxide diffusing capacity (DlCO) measurement that are specifically due to conductive ventilation heterogeneity, i.e., due to a combination of ventilation heterogeneity and flow asynchrony between lung units larger than acini. We induced conductive airway ventilation heterogeneity in 35 never-smoker normal subjects by histamine provocation and related the resulting changes in conductive ventilation heterogeneity (derived from the multiple-breath washout test) to corresponding changes in diffusing capacity, alveolar volume, and inspired vital capacity (derived from the single-breath DlCO method). Average conductive ventilation heterogeneity doubled ( P < 0.001), whereas DlCO decreased by 6% ( P < 0.001), with no correlation between individual data ( P > 0.1). Average inspired vital capacity and alveolar volume both decreased significantly by, respectively, 6 and 3%, and the individual changes in alveolar volume and in conductive ventilation heterogeneity were correlated ( r = −0.46; P = 0.006). These findings can be brought in agreement with recent modeling work, where specific ventilation heterogeneity resulting from different distributions of either inspired volume or end-expiratory lung volume have been shown to affect DlCO estimation errors in opposite ways. Even in the presence of flow asynchrony, these errors appear to largely cancel out in our experimental situation of histamine-induced conductive ventilation heterogeneity. Finally, we also predicted which alternative combination of specific ventilation heterogeneity and flow asynchrony could affect DlCO estimate in a more substantial fashion in diseased lungs, irrespective of any diffusion-dependent effects.


1981 ◽  
Vol 51 (4) ◽  
pp. 858-863 ◽  
Author(s):  
D. L. Stokes ◽  
N. R. MacIntyre ◽  
J. A. Nadel

To study the effects of exercise on pulmonary diffusing capacity, we measured the lungs' diffusing capacity for carbon monoxide (DLCO) during exhalation from 30 to 45% exhaled vital capacity in eight healthy subjects at rest and during exercise while both sitting and supine. We found that DLCO at these lung volumes in resting subjects was 26.3 +/- 3.2% (mean +/- SE) higher in the supine than in the sitting position (P less than 0.001). We also found that, in both positions, DLCO at these lung volumes increased significantly (P less than 0.001) with increasing exercise and approached similar values at maximal exercise. The pattern of increase in DLCO with an increase in oxygen consumption in both positions was curvilinear in that the rate of increase in DLCO during mild exercise was greater than the rate of increase in DLCO during heavy exercise (P = 0.02). Furthermore, in the supine position during exercise, it appeared that DLCO reached a physiological maximum.


1989 ◽  
Vol 10 (2) ◽  
pp. 187-198
Author(s):  
Robert O. Crapo ◽  
Robert E. Forster

2021 ◽  
pp. 2004459
Author(s):  
Warren R. Ruehland ◽  
Celia J. Lanteri ◽  
Pam Matsas ◽  
Danny J. Brazzale

1969 ◽  
Vol 26 (2) ◽  
pp. 161-169 ◽  
Author(s):  
T R Fisher ◽  
R F Coburn ◽  
R E Forster

Sign in / Sign up

Export Citation Format

Share Document