scholarly journals X-ray of the lungs and neural networks: classification of pneumonia and COVID-19

Author(s):  
Liubov Parolina ◽  
Vadim Efremtsev ◽  
Nikolay Efremtsev ◽  
Evgeniy Teterin ◽  
Peter Teterin ◽  
...  
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Ivan Lorencin ◽  
Sandi Baressi Šegota ◽  
Nikola Anđelić ◽  
Anđela Blagojević ◽  
Tijana Šušteršić ◽  
...  

COVID-19 represents one of the greatest challenges in modern history. Its impact is most noticeable in the health care system, mostly due to the accelerated and increased influx of patients with a more severe clinical picture. These facts are increasing the pressure on health systems. For this reason, the aim is to automate the process of diagnosis and treatment. The research presented in this article conducted an examination of the possibility of classifying the clinical picture of a patient using X-ray images and convolutional neural networks. The research was conducted on the dataset of 185 images that consists of four classes. Due to a lower amount of images, a data augmentation procedure was performed. In order to define the CNN architecture with highest classification performances, multiple CNNs were designed. Results show that the best classification performances can be achieved if ResNet152 is used. This CNN has achieved AUCmacro¯ and AUCmicro¯ up to 0.94, suggesting the possibility of applying CNN to the classification of the clinical picture of COVID-19 patients using an X-ray image of the lungs. When higher layers are frozen during the training procedure, higher AUCmacro¯ and AUCmicro¯ values are achieved. If ResNet152 is utilized, AUCmacro¯ and AUCmicro¯ values up to 0.96 are achieved if all layers except the last 12 are frozen during the training procedure.


2020 ◽  
Vol 9 (10) ◽  
pp. e889108382
Author(s):  
Jose Vigno Moura Sousa ◽  
Vilson Rosa de Almeida ◽  
Aratã Andrade Saraiva ◽  
Domingos Bruno Sousa Santos ◽  
Pedro Mateus Cunha Pimentel ◽  
...  

This paper presents an approach for the classification of child chest X-ray images into two classes: pneumonia and normal. We employ Convolutional Neural Networks, from pre-trained networks together with a quantization process, using the platform TensorFlow Lite method. This reduces the processing requirement and computational cost. Results have shown accuracy up to 95.4% and 94.2% for MobileNetV1 and MobileNetV2, respectively. The resulting mobile app also presents a simple and intuitive user interface.


Author(s):  
Д.Ф. Пирова ◽  
Б.Э. Забержинский ◽  
А.Г. Золин

Статья посвящена исследованию методов проектирования интеллектуальных информационных систем и применение моделей искусственных нейронных сетей для диагностического прогнозирования развития пневмонии посредством анализа рентгеновских снимков. В этой работе основное внимание уделяется классификации пневмонии и туберкулеза - двух основных заболеваний грудной клетки - на основе рентгеновских снимков грудной клетки. Данное исследование проводилось при помощи открытой нейросетевой библиотеки Keras и языка программирования Python. Система дает пользователю заключение о том, болен он или нет, тем самым помогая врачам и медицинскому персоналу принять быстрое и информированное решение о наличии заболевания. Разработанная модель, может определить, является ли рентгеновский снимок нормальным или имеет отклонения, которые могут быть пневмонией с точностью 94,87%. Полученные результаты указывают на высокую эффективность применения нейронных сетей при диагностировании пневмонии по рентгеновским снимкам. This paper is devoted to the study of methods of designing intellectual information systems and neural network models application on diagnostic prediction of pneumonia development by X-ray images analysis. This article focuses on the classification of pneumonia and tuberculosis - the two main chest diseases - based on chest x-rays. This study was carried out using the Keras open neural network library and the Python programming language. System returns user a conclusion whether the patient is ill or not helping medical staff to make a quick and informed decision about the presence of the disease. The developed model can determine is the X-ray image normal or has anomalies that can be pneumonia with accuracy up to 94.87%. The results obtained indicate the high performance of the applying neural networks in the diagnosis of pneumonia by X-ray images.


2020 ◽  
Vol 12 (3) ◽  
pp. 132-141
Author(s):  
Nator Junior Carvalho da Costa ◽  
Jose Vigno Moura Sousa ◽  
Domingos Bruno Sousa Santos ◽  
Francisco das Chagas Fontenele Marques Junior ◽  
Rodrigo Teixeira de Melo

This paper describes a comparison between three pre-trained neural networks for the classification of chest X-ray images: Xception, Inception V3, and NasNetLarge. Networks were implemented using learning transfer; The database used was the chest x-ray data set, which contains a total of 5856 chest x-ray images of pediatric patients aged one to five years, with three classes: Normal Viral Pneumonia and Bacterial Pneumonia. Data were divided into three groups: validation, testing and training. A comparison was made with the work of kermany who implemented the Inception V3 network in two ways: (Pneumonia X Normal) and (Bacterial Pneumonia X Viral Pneumonia). The nets used had good accuracy, being the NasNetLarge network the best precision, which was 95.35 \% (Pneumonia X Normal) and 91.79 \% (Viral Pneumonia X Bacterial Pneumonia) against 92.80 \% in (Pneumonia X Normal) and 90.70 \% (Viral Pneumonia X Bacterial Pneumonia) from kermany's work, the Xception network also achieved an improvement in accuracy compared to kermany's work, with 93.59 \% at (Normal X Pneumonia) and 91.03 \% in (Viral Pneumonia X Bacterial Pneumonia).


2020 ◽  
Author(s):  
Elisha Goldstein ◽  
Daphna Keidar ◽  
Daniel Yaron ◽  
Yair Shachar ◽  
Ayelet Blass ◽  
...  

AbstractBackgroundIn the midst of the coronavirus disease 2019 (COVID-19) outbreak, chest X-ray (CXR) imaging is playing an important role in the diagnosis and monitoring of patients with COVID-19. Machine learning solutions have been shown to be useful for X-ray analysis and classification in a range of medical contexts.PurposeThe purpose of this study is to create and evaluate a machine learning model for diagnosis of COVID-19, and to provide a tool for searching for similar patients according to their X-ray scans.Materials and MethodsIn this retrospective study, a classifier was built using a pre-trained deep learning model (ReNet50) and enhanced by data augmentation and lung segmentation to detect COVID-19 in frontal CXR images collected between January 2018 and July 2020 in four hospitals in Israel. A nearest-neighbors algorithm was implemented based on the network results that identifies the images most similar to a given image. The model was evaluated using accuracy, sensitivity, area under the curve (AUC) of receiver operating characteristic (ROC) curve and of the precision-recall (P-R) curve.ResultsThe dataset sourced for this study includes 2362 CXRs, balanced for positive and negative COVID-19, from 1384 patients (63 +/- 18 years, 552 men). Our model achieved 89.7% (314/350) accuracy and 87.1% (156/179) sensitivity in classification of COVID-19 on a test dataset comprising 15% (350 of 2326) of the original data, with AUC of ROC 0.95 and AUC of the P-R curve 0.94. For each image we retrieve images with the most similar DNN-based image embeddings; these can be used to compare with previous cases.ConclusionDeep Neural Networks can be used to reliably classify CXR images as COVID-19 positive or negative. Moreover, the image embeddings learned by the network can be used to retrieve images with similar lung findings.SummaryDeep Neural Networks and can be used to reliably predict chest X-ray images as positive for coronavirus disease 2019 (COVID-19) or as negative for COVID-19.Key ResultsA machine learning model was able to detect chest X-ray (CXR) images of patients tested positive for coronavirus disease 2019 with accuracy of 89.7%, sensitivity of 87.1% and area under receiver operating characteristic curve of 0.95.A tool was created for finding existing CXR images with imaging characteristics most similar to a given CXR, according to the model’s image embeddings.


Sign in / Sign up

Export Citation Format

Share Document