scholarly journals Characterization of cough evoked by inhaled treprostinil and treprostinil palmitil

2020 ◽  
pp. 00592-2020 ◽  
Author(s):  
Richard W. Chapman ◽  
Michel R. Corboz ◽  
Carlos Fernandez ◽  
Eugene Sullivan ◽  
Andy Stautberg ◽  
...  

Cough is induced by inhaled prostacyclin analogs including treprostinil (TRE), and, at higher doses, treprostinil palmitil (TP), a prodrug of TRE. In this report, we have investigated mechanisms involved with TRE- and TP-induced cough, using a dry powder formulation of TP (TPIP) to supplement previous data obtained with an aqueous suspension formulation of TP (TPIS).Experiments in guinea pigs and rats investigated the prostanoid receptor subtype producing cough and whether it involved activation of sensory nerves in the airways and vasculature. Experiments involved treatment with prostanoid, tachykinin and bradykinin receptor antagonists, a cyclooxygenase inhibitor and TRE administration to the isolated larynx or intravenously.In guinea pigs, cough with inhaled TRE (1.23 µg·kg−1) was not observed with an equivalent dose of TPIP and required higher inhaled doses (12.8 and 35.8 µg·kg) to induce cough. TRE cough was blocked with IP and tachykinin NK1 receptor antagonists but not with EP1, EP2, EP3, DP1 or bradykinin B2 antagonists or a cyclooxygenase inhibitor. TRE administered to the isolated larynx or intravenously in rats produced no apnea or swallowing, whereas citric acid, capsaicin and hypertonic saline had significant effects.The mechanisms inducing cough with inhaled TRE likely involves the activation of prostanoid IP receptors on jugular C-fibers in the tracheobronchial airways. Cough induced by inhaled dry powder and nebulised formulations of TP occurs at higher inhaled doses than TRE, presumably due to the slow, sustained release of TRE from the prodrug resulting in lower concentrations of TRE at the airway sensory nerves.

2006 ◽  
Vol 291 (2) ◽  
pp. R454-R463 ◽  
Author(s):  
Brendan J. Canning ◽  
David G. Farmer ◽  
Nanako Mori

Experiments carried out in conscious guinea pigs suggest that citric acid-evoked coughing is partly mediated by transient receptor potential vanilloid type 1 (TRPV1) receptor-dependent activation of tachykinin-containing, capsaicin-sensitive C fibers. In vitro electrophysiological analyses indicate, however, that acid also activates capsaicin-sensitive and -insensitive vagal afferent nerves by a TRPV1-independent mechanism, and studies in anesthetized guinea pigs show that coughing evoked by acid is mediated by activation of capsaicin-insensitive vagal afferent nerves. In the present study, we have characterized the mechanisms of citric acid-evoked coughing in anesthetized guinea pigs. Drugs were administered directly to the Krebs buffer perfusing the extrathoracic trachea. Citric acid was applied topically to the tracheal mucosa, directly into the tracheal perfusate in increasing concentrations and at 1-min intervals. Citric acid dose dependently evoked coughing in anesthetized guinea pigs. This was mimicked by hydrochloric acid but not by sodium citrate. The coughing evoked by acid was nearly or completely abolished by TTX or by cutting the recurrent laryngeal nerves. Perfusing the trachea with a low Cl− buffer potentiated the acid-induced cough reflex. In contrast, prior capsaicin desensitization, 10 μM capsazepine, Ca2+-free perfusate, 0.1 μM iberiotoxin, 1 μM atropine, 10 μM isoproterenol, 10 μM albuterol, 3 μM indomethacin, 0.1 μM HOE-140, a combination of neurokinin1 (NK1; CP-99994), NK2 (SR-48968), and NK3 (SB-223412) receptor antagonists (0.1 μM each), a combination of histamine H1 (3 μM pyrilamine) and cysLT1 (1 μM ICI-198615) receptor antagonists, superior laryngeal nerve transection, or epithelium removal did not inhibit citric acid-evoked coughing. These and other data indicate that citric acid-evoked coughing in anesthetized guinea pigs is mediated by direct activation of capsaicin-insensitive vagal afferent nerves, perhaps through sequential activation of acid-sensing ion channels and chloride channels.


1995 ◽  
Vol 73 (7) ◽  
pp. 843-847 ◽  
Author(s):  
Pierangelo Geppetti ◽  
Claude Bertrand ◽  
Fabio M. L. Ricciardolo ◽  
Jay A. Nadei

The inflammatory response to injury consists of the activation of several protective mechanisms involving different cellular systems. Among the mechanisms and systems that exert their effects rapidly, peptide transmitters released from peripheral endings of primary sensory neurons (evoking neurogenic inflammation) play a major role in the response to tissue injury. Noxious stimuli may directly activate sensory nerves to release proinflammatory neuropeptides. More recently, evidence has accumulated suggesting that indirect mechanisms leading to sensory neuropeptide release are also activated in relevant models of pathophysiological conditions. Tachykinin NK1 and NK2 receptor antagonists reduced the plasma extravasation in the trachea and nasal mucosa and the bronchoconstriction caused by antigen challenge in sensitized guinea-pigs. Blockade of kinin B2 receptors with the selective antagonist HOE-140 had a similar inhibitory effect. The magnitude of the inhibition observed with the kinin receptor antagonist alone was similar to that caused by a combination a tachykinin and kinin receptor antagonists. This suggests activation of a common final pathway by these two groups of mediators. Pharmacological and biochemical evidence suggests that in the airways of sensitized guinea-pigs, kinins released by the anaphylactic reaction stimulate the release of tachykinins from sensory nerves, thus contributing to their proinflammatory action.Key words: kinins, tachykinins, neurogenic inflammation, antigen challenge, airways, nitric oxide.


1991 ◽  
Vol 71 (6) ◽  
pp. 2077-2087 ◽  
Author(s):  
J. Solway ◽  
A. R. Leff

Sensory nerves synthesize tachykinins and calcitonin-gene related peptide and package these neuropeptides together in synaptic vesicles. Stimulation of these C-fibers by a range of chemical and physical factors results in afferent neuronal conduction that elicits central parasympathetic reflexes and in antidromic conduction that results in local release of neuropeptides through the axon reflex. In the airways, sensory neuropeptides act on bronchial smooth muscle, the mucosal vasculature, and submucosal glands to promote airflow obstruction, hyperemia, microvascular hyperpermeability, and mucus hypersecretion. In addition, tachykinins potentiate cholinergic neurotransmission. Proinflammatory effects of these peptides also promote the recruitment, adherence, and activation of granulocytes that may further exacerbate neurogenic inflammation (i.e., neuropeptide-induced plasma extravasation and vasodilation). Enzymatic degradation limits the physiological effects of tachykinins but may be impaired by respiratory infection or other factors. Given their sensitivity to noxious compounds and physical stimuli and their potent effects on airway function, it is possible that neuropeptide-containing sensory nerves play an important role in mediating airway responses in human disease. Supporting this view are the striking phenomenological similarities between hyperpnea-induced bronchoconstriction (HIB) in guinea pigs and HIB in patients with exercise-induced asthma. Endogenous tachykinins released from airway sensory nerves mediate HIB in guinea pigs and also cause hyperpnea-induced bronchovascular hyperpermeability in these animals. On the basis of these observations, it is reasonable to speculate that sensory neuropeptides participate in the pathogenesis of hyperpnea-induced airflow obstruction in human asthmatic subjects as well.


1993 ◽  
Vol 265 (5) ◽  
pp. L507-L511 ◽  
Author(s):  
C. Bertrand ◽  
P. Geppetti ◽  
P. D. Graf ◽  
A. Foresi ◽  
J. A. Nadel

The role of tachykinins released from sensory nerves in bronchoconstriction induced by antigen was studied in sensitized guinea pigs anesthetized with pentobarbital sodium and pretreated with atropine. The combination of NK2 (SR-48968) and NK1 (CP-96,345) tachykinin-receptor antagonists abolished the increase in total pulmonary resistance (RL) evoked by intravenous capsaicin but did not affect the response evoked by intravenous histamine. A small dose of aerosolized ovalbumin (OVA, 0.1%) produced a small increase in RL that was further increased and markedly prolonged by the neutral endopeptidase (NEP) inhibitor phosphoramidon; this bronchoconstrictor effect of OVA was markedly reduced by the NK2-receptor antagonist and was abolished by the combination of the NK1 and NK2-receptor antagonists together. When a larger dose of OVA (0.5%) was used, a maximal bronchoconstrictor response was obtained. Phosphoramidon did not potentiate this response significantly. The combination of NK1- and NK2-receptor antagonists blunted the response at 5 min only slightly but markedly attenuated the later (10–20 min) response. These results show that tachykinins released from sensory nerves play a significant role in antigen-induced bronchoconstriction in guinea pigs. This effect is exaggerated when the normal modulation of neuropeptides by NEP is inhibited and is mediated predominantly by NK2-receptor activation, with a smaller contribution by NK1 receptors.


2018 ◽  
Vol 314 (3) ◽  
pp. R489-R498 ◽  
Author(s):  
Yang-Ling Chou ◽  
Nanako Mori ◽  
Brendan J. Canning

We have addressed the hypothesis that the opposing effects of bronchopulmonary C-fiber activation on cough are attributable to the activation of C-fiber subtypes. Coughing was evoked in anesthetized guinea pigs by citric acid (0.001–2 M) applied topically in 100-µl aliquots to the tracheal mucosa. In control preparations, citric acid evoked 10 ± 1 coughs cumulatively. Selective activation of the pulmonary C fibers arising from the nodose ganglia with either aerosols or continuous intravenous infusion of adenosine or the 5-HT3 receptor-selective agonist 2-methyl-5-HT nearly abolished coughing evoked subsequently by topical citric acid challenge. Delivering adenosine or 2-methyl-5-HT directly to the tracheal mucosa (where few if any nodose C fibers terminate) was without effect on citric acid-evoked cough. These actions of pulmonary administration of adenosine and 2-methyl-5-HT were accompanied by an increase in respiratory rate, but it is unlikely that the change in respiratory pattern caused the decrease in coughing, as the rapidly adapting receptor stimulant histamine also produced a marked tachypnea but was without effect on cough. In awake guinea pigs, adenosine failed to evoke coughing but reduced coughing induced by the nonselective C-fiber stimulant capsaicin. We conclude that bronchopulmonary C-fiber subtypes in guinea pigs have opposing effects on cough, with airway C fibers arising from the jugular ganglia initiating and/or sensitizing the cough reflex and the intrapulmonary C fibers arising from the nodose ganglia actively inhibiting cough upon activation.


1999 ◽  
Vol 276 (3) ◽  
pp. R872-R879 ◽  
Author(s):  
Donella B. Sampey ◽  
Louise M. Burrell ◽  
Robert E. Widdop

The aim of the present study was to determine the receptor subtype involved in arginine vasopressin (AVP)-induced modulation of baroreflex function in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats using novel nonpeptide AVP V1- and V2-receptor antagonists. Baroreceptor heart rate (HR) reflex was investigated in both SHR and WKY rats which were intravenously administered the selective V1- and V2-receptor antagonists OPC-21268 and OPC-31260, respectively. Baroreflex function was assessed by obtaining alternate pressor and depressor responses to phenylephrine and sodium nitroprusside, respectively, to construct baroreflex curves. In both SHR and WKY rats baroreflex activity was tested before and after intravenous administration of vehicle (20% DMSO), OPC-21268 (10 mg/kg), and OPC-31260 (1 and 10 mg/kg). Vehicle did not significantly alter basal mean arterial pressure (MAP) and HR values or baroreflex function in SHR or WKY rats. The V1-receptor antagonist had no significant effect on resting MAP or HR values or on baroreflex parameters in both groups of rats, although this dose was shown to significantly inhibit the pressor response to AVP (5 ng iv; ANOVA, P < 0.05). In SHR but not WKY rats the V2-receptor antagonist significantly attenuated the gain (or slope) of the baroreflex curve (to 73 ± 3 and 79 ± 7% of control for 1 and 10 mg/kg, respectively), although AVP-induced pressor responses were also attenuated with the higher dose of the V2-receptor antagonist. These findings suggest that AVP tonically enhances baroreflex function through a V2 receptor in the SHR.


Sign in / Sign up

Export Citation Format

Share Document