scholarly journals Sample size calculation based on exact test for assessing differential expression analysis in RNA-seq data

2013 ◽  
Vol 14 (1) ◽  
pp. 357 ◽  
Author(s):  
Chung-I Li ◽  
Pei-Fang Su ◽  
Yu Shyr
2021 ◽  
Vol 1 (2) ◽  
pp. 47-63
Author(s):  
Xiaohong Li ◽  
Shesh N. Rai ◽  
Eric C. Rouchka ◽  
Timothy E. O’Toole ◽  
Nigel G. F. Cooper

Sample size calculation for adequate power analysis is critical in optimizing RNA-seq experimental design. However, the complexity increases for directly estimating sample size when taking into consideration confounding covariates. Although a number of approaches for sample size calculation have been proposed for RNA-seq data, most ignore any potential heterogeneity. In this study, we implemented a simulation-based and confounder-adjusted method to provide sample size recommendations for RNA-seq differential expression analysis. The data was generated using Monte Carlo simulation, given an underlined distribution of confounding covariates and parameters for a negative binomial distribution. The relationship between the sample size with the power and parameters, such as dispersion, fold change and mean read counts, can be visualized. We demonstrate that the adjusted sample size for a desired power and type one error rate of α is usually larger when taking confounding covariates into account. More importantly, our simulation study reveals that sample size may be underestimated by existing methods if a confounding covariate exists in RNA-seq data. Consequently, this underestimate could affect the detection power for the differential expression analysis. Therefore, we introduce confounding covariates for sample size estimation for heterogeneous RNA-seq data.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Matthew Chung ◽  
Vincent M. Bruno ◽  
David A. Rasko ◽  
Christina A. Cuomo ◽  
José F. Muñoz ◽  
...  

AbstractAdvances in transcriptome sequencing allow for simultaneous interrogation of differentially expressed genes from multiple species originating from a single RNA sample, termed dual or multi-species transcriptomics. Compared to single-species differential expression analysis, the design of multi-species differential expression experiments must account for the relative abundances of each organism of interest within the sample, often requiring enrichment methods and yielding differences in total read counts across samples. The analysis of multi-species transcriptomics datasets requires modifications to the alignment, quantification, and downstream analysis steps compared to the single-species analysis pipelines. We describe best practices for multi-species transcriptomics and differential gene expression.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Xueyi Dong ◽  
Luyi Tian ◽  
Quentin Gouil ◽  
Hasaru Kariyawasam ◽  
Shian Su ◽  
...  

Abstract Application of Oxford Nanopore Technologies’ long-read sequencing platform to transcriptomic analysis is increasing in popularity. However, such analysis can be challenging due to the high sequence error and small library sizes, which decreases quantification accuracy and reduces power for statistical testing. Here, we report the analysis of two nanopore RNA-seq datasets with the goal of obtaining gene- and isoform-level differential expression information. A dataset of synthetic, spliced, spike-in RNAs (‘sequins’) as well as a mouse neural stem cell dataset from samples with a null mutation of the epigenetic regulator Smchd1 was analysed using a mix of long-read specific tools for preprocessing together with established short-read RNA-seq methods for downstream analysis. We used limma-voom to perform differential gene expression analysis, and the novel FLAMES pipeline to perform isoform identification and quantification, followed by DRIMSeq and limma-diffSplice (with stageR) to perform differential transcript usage analysis. We compared results from the sequins dataset to the ground truth, and results of the mouse dataset to a previous short-read study on equivalent samples. Overall, our work shows that transcriptomic analysis of long-read nanopore data using long-read specific preprocessing methods together with short-read differential expression methods and software that are already in wide use can yield meaningful results.


2019 ◽  
Author(s):  
Avi Srivastava ◽  
Laraib Malik ◽  
Hirak Sarkar ◽  
Mohsen Zakeri ◽  
Fatemeh Almodaresi ◽  
...  

AbstractBackgroundThe accuracy of transcript quantification using RNA-seq data depends on many factors, such as the choice of alignment or mapping method and the quantification model being adopted. While the choice of quantification model has been shown to be important, considerably less attention has been given to comparing the effect of various read alignment approaches on quantification accuracy.ResultsWe investigate the influence of mapping and alignment on the accuracy of transcript quantification in both simulated and experimental data, as well as the effect on subsequent differential expression analysis. We observe that, even when the quantification model itself is held fixed, the effect of choosing a different alignment methodology, or aligning reads using different parameters, on quantification estimates can sometimes be large, and can affect downstream differential expression analyses as well. These effects can go unnoticed when assessment is focused too heavily on simulated data, where the alignment task is often simpler than in experimentally-acquired samples. We also introduce a new alignment methodology, called selective alignment, to overcome the shortcomings of lightweight approaches without incurring the computational cost of traditional alignment.ConclusionWe observe that, on experimental datasets, the performance of lightweight mapping and alignment-based approaches varies significantly and highlight some of the underlying factors. We show this variation both in terms of quantification and downstream differential expression analysis. In all comparisons, we also show the improved performance of our proposed selective alignment method and suggest best practices for performing RNA-seq quantification.


Sign in / Sign up

Export Citation Format

Share Document