scholarly journals Accurate prediction of protein secondary structure and solvent accessibility by consensus combiners of sequence and structure information

2007 ◽  
Vol 8 (1) ◽  
Author(s):  
Gianluca Pollastri ◽  
Alberto JM Martin ◽  
Catherine Mooney ◽  
Alessandro Vullo
2012 ◽  
Vol 1 (1) ◽  
pp. 79-87 ◽  
Author(s):  
Shangping Wang ◽  
Harriëtte Oldenhof ◽  
Andres Hilfiker ◽  
Michael Harder ◽  
Willem F. Wolkers

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thanh Thi Nguyen ◽  
Pubudu N. Pathirana ◽  
Thin Nguyen ◽  
Quoc Viet Hung Nguyen ◽  
Asim Bhatti ◽  
...  

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly pathogenic virus that has caused the global COVID-19 pandemic. Tracing the evolution and transmission of the virus is crucial to respond to and control the pandemic through appropriate intervention strategies. This paper reports and analyses genomic mutations in the coding regions of SARS-CoV-2 and their probable protein secondary structure and solvent accessibility changes, which are predicted using deep learning models. Prediction results suggest that mutation D614G in the virus spike protein, which has attracted much attention from researchers, is unlikely to make changes in protein secondary structure and relative solvent accessibility. Based on 6324 viral genome sequences, we create a spreadsheet dataset of point mutations that can facilitate the investigation of SARS-CoV-2 in many perspectives, especially in tracing the evolution and worldwide spread of the virus. Our analysis results also show that coding genes E, M, ORF6, ORF7a, ORF7b and ORF10 are most stable, potentially suitable to be targeted for vaccine and drug development.


2021 ◽  
Author(s):  
Gang Xu ◽  
Qinghua Wang ◽  
Jianpeng Ma

In this paper, we report an open-source toolkit for protein 3D structure modeling, named OPUS-X. It contains three modules: OPUS-TASS2, which predicts protein torsion angles, secondary structure and solvent accessibility; OPUS-Contact, which measures the distance and orientations information between different residue pairs; and OPUS-Fold2, which uses the constraints derived from the first two modules to guide folding. OPUS-TASS2 is an upgraded version of our previous method OPUSS-TASS (Bioinformatics 2020, 36 (20), 5021-5026). OPUS-TASS2 integrates protein global structure information and significantly outperforms OPUS-TASS. OPUS-Contact combines multiple raw co-evolutionary features with protein 1D features predicted by OPUS-TASS2, and delivers better results than the open-source state-of-the-art method trRosetta. OPUS-Fold2 is a complementary version of our previous method OPUS-Fold (J. Chem. Theory Comput. 2020, 16 (6), 3970-3976). OPUS-Fold2 is a gradient-based protein folding framework based on the differentiable energy terms in opposed to OPUS-Fold that is a sampling-based method used to deal with the non-differentiable terms. OPUS-Fold2 exhibits comparable performance to the Rosetta folding protocol in trRosetta when using identical inputs. OPUS-Fold2 is written in Python and TensorFlow2.4, which is user-friendly to any source-code level modification. The code and pre-trained models of OPUS-X can be downloaded from https://github.com/OPUS-MaLab/opus_x.


Author(s):  
Gang Xu ◽  
Qinghua Wang ◽  
Jianpeng Ma

Abstract Motivation The development of an open-source platform to predict protein 1D features and 3D structure is an important task. In this paper, we report an open-source toolkit for protein 3D structure modeling, named OPUS-X. It contains three modules: OPUS-TASS2, which predicts protein torsion angles, secondary structure and solvent accessibility; OPUS-Contact, which measures the distance and orientation information between different residue pairs; and OPUS-Fold2, which uses the constraints derived from the first two modules to guide folding. Results OPUS-TASS2 is an upgraded version of our previous method OPUSS-TASS. OPUS-TASS2 integrates protein global structure information and significantly outperforms OPUS-TASS. OPUS-Contact combines multiple raw co-evolutionary features with protein 1D features predicted by OPUS-TASS2, and delivers better results than the open-source state-of-the-art method trRosetta. OPUS-Fold2 is a complementary version of our previous method OPUS-Fold. OPUS-Fold2 is a gradient-based protein folding framework based on the differentiable energy terms in opposed to OPUS-Fold that is a sampling-based method used to deal with the non-differentiable terms. OPUS-Fold2 exhibits comparable performance to the Rosetta folding protocol in trRosetta when using identical inputs. OPUS-Fold2 is written in Python and TensorFlow2.4, which is user-friendly to any source-code level modification. Availability The code and pre-trained models of OPUS-X can be downloaded from https://github.com/OPUS-MaLab/opus_x. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document