scholarly journals Estimating numerical error in neural network simulations on Graphics Processing Units

2015 ◽  
Vol 16 (S1) ◽  
Author(s):  
James P Turner ◽  
Thomas Nowotny
2020 ◽  
Vol 2 (1) ◽  
pp. 29-36
Author(s):  
M. I. Zghoba ◽  
◽  
Yu. I. Hrytsiuk ◽  

The peculiarities of neural network training for forecasting taxi passenger demand using graphics processing units are considered, which allowed to speed up the training procedure for different sets of input data, hardware configurations, and its power. It has been found that taxi services are becoming more accessible to a wide range of people. The most important task for any transportation company and taxi driver is to minimize the waiting time for new orders and to minimize the distance from drivers to passengers on order receiving. Understanding and assessing the geographical passenger demand that depends on many factors is crucial to achieve this goal. This paper describes an example of neural network training for predicting taxi passenger demand. It shows the importance of a large input dataset for the accuracy of the neural network. Since the training of a neural network is a lengthy process, parallel training was used to speed up the training. The neural network for forecasting taxi passenger demand was trained using different hardware configurations, such as one CPU, one GPU, and two GPUs. The training times of one epoch were compared along with these configurations. The impact of different hardware configurations on training time was analyzed in this work. The network was trained using a dataset containing 4.5 million trips within one city. The results of this study show that the training with GPU accelerators doesn't necessarily improve the training time. The training time depends on many factors, such as input dataset size, splitting of the entire dataset into smaller subsets, as well as hardware and power characteristics.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1479 ◽  
Author(s):  
Michael Losh ◽  
Daniel Llamocca

Modern massively-parallel Graphics Processing Units (GPUs) and Machine Learning (ML) frameworks enable neural network implementations of unprecedented performance and sophistication. However, state-of-the-art GPU hardware platforms are extremely power-hungry, while microprocessors cannot achieve the performance requirements. Biologically-inspired Spiking Neural Networks (SNN) have inherent characteristics that lead to lower power consumption. We thus present a bit-serial SNN-like hardware architecture. By using counters, comparators, and an indexing scheme, the design effectively implements the sum-of-products inherent in neurons. In addition, we experimented with various strength-reduction methods to lower neural network resource usage. The proposed Spiking Hybrid Network (SHiNe), validated on an FPGA, has been found to achieve reasonable performance with a low resource utilization, with some trade-off with respect to hardware throughput and signal representation.


2013 ◽  
Vol 40 (1) ◽  
pp. 143-153 ◽  
Author(s):  
Lin Wang ◽  
Bo Yang ◽  
Yuehui Chen ◽  
Zhenxiang Chen ◽  
Hongwei Sun

2018 ◽  
Author(s):  
Marcel Stimberg ◽  
Dan F. M. Goodman ◽  
Thomas Nowotny

“Brian” is a popular Python-based simulator for spiking neural networks, commonly used in computational neuroscience. GeNN is a C++-based meta-compiler for accelerating spiking neural network simulations using consumer or high performance grade graphics processing units (GPUs). Here we introduce a new software package, Brian2GeNN, that connects the two systems so that users can make use of GeNN GPU acceleration when developing their models in Brian, without requiring any technical knowledge about GPUs, C++ or GeNN. The new Brian2GeNN software uses a pipeline of code generation to translate Brian scripts into C++ code that can be used as input to GeNN, and subsequently can be run on suitable NVIDIA GPU accelerators. From the user’s perspective, the entire pipeline is invoked by adding two simple lines to their Brian scripts. We have shown that using Brian2GeNN, typical models can run tens to hundreds of times faster than on CPU.


Sign in / Sign up

Export Citation Format

Share Document