scholarly journals Polymorphisms of methylenetetrahydrofolate reductase (MTHFR) and susceptibility to pediatric acute lymphoblastic leukemia in a German study population

2005 ◽  
Vol 6 (1) ◽  
Author(s):  
Eckart Schnakenberg ◽  
Andrea Mehles ◽  
Gunnar Cario ◽  
Klaus Rehe ◽  
Kathrin Seidemann ◽  
...  
Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 468
Author(s):  
Nikola Kotur ◽  
Jelena Lazic ◽  
Bojan Ristivojevic ◽  
Biljana Stankovic ◽  
Vladimir Gasic ◽  
...  

Methotrexate (MTX) is one of the staples of pediatric acute lymphoblastic leukemia (ALL) treatment. MTX targets the folate metabolic pathway (FMP). Abnormal function of the enzymes in FMP, due to genetic aberrations, leads to adverse drug reactions. The aim of this study was to investigate variants in pharmacogenes involved in FMP and their association with MTX pharmacokinetics (MTX elimination profile) and toxicity in the consolidation therapy phase of pediatric ALL patients. Eleven variants in the thymidylate synthetase (TYMS), methylenetetrahydrofolate reductase (MTHFR), dihydrofolate reductase (DHFR), SLC19A1 and SLCO1B genes were analyzed in 148 patients, using PCR- and sequencing-based methodology. For the Serbian and European control groups, data on allele frequency distribution were extracted from in-house and public databases. Our results show that the A allele of SLC19A1 c.80 variant contributes to slow MTX elimination. Additionally, the AA genotype of the same variant is a predictor of MTX-related hepatotoxicity. Patients homozygous for TYMS 6bp deletion were more likely to experience gastrointestinal toxicity. No allele frequency dissimilarity was found for the analyzed variants between Serbian and European populations. Statistical modelling did not show a joint effect of analyzed variants. Our results indicate that SLC19A1 c.80 variant and TYMS 6bp deletion are the most promising pharmacogenomic markers of MTX response in pediatric ALL patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shumaila Sayyab ◽  
Anders Lundmark ◽  
Malin Larsson ◽  
Markus Ringnér ◽  
Sara Nystedt ◽  
...  

AbstractThe mechanisms driving clonal heterogeneity and evolution in relapsed pediatric acute lymphoblastic leukemia (ALL) are not fully understood. We performed whole genome sequencing of samples collected at diagnosis, relapse(s) and remission from 29 Nordic patients. Somatic point mutations and large-scale structural variants were called using individually matched remission samples as controls, and allelic expression of the mutations was assessed in ALL cells using RNA-sequencing. We observed an increased burden of somatic mutations at relapse, compared to diagnosis, and at second relapse compared to first relapse. In addition to 29 known ALL driver genes, of which nine genes carried recurrent protein-coding mutations in our sample set, we identified putative non-protein coding mutations in regulatory regions of seven additional genes that have not previously been described in ALL. Cluster analysis of hundreds of somatic mutations per sample revealed three distinct evolutionary trajectories during ALL progression from diagnosis to relapse. The evolutionary trajectories provide insight into the mutational mechanisms leading relapse in ALL and could offer biomarkers for improved risk prediction in individual patients.


Sign in / Sign up

Export Citation Format

Share Document