scholarly journals Correction: A fixed point theorem for cyclic generalized contractions in metric spaces. Fixed Point Theory and Applications 2012, 2012:122

2013 ◽  
Vol 2013 (1) ◽  
pp. 39 ◽  
Author(s):  
Maryam A Alghamdi ◽  
Adrian Petruşel ◽  
Naseer Shahzad

2005 ◽  
Vol 2005 (5) ◽  
pp. 789-801
Author(s):  
Bijendra Singh ◽  
Shishir Jain ◽  
Shobha Jain

Rhoades (1996) proved a fixed point theorem in a boundedD-metric space for a contractive self-map with applications. Here we establish a more general fixed point theorem in an unboundedD-metric space, for two self-maps satisfying a general contractive condition with a restricted domain ofxandy. This has been done by using the notion of semicompatible maps inD-metric space. These results generalize and improve the results of Rhoades (1996), Dhage et al. (2000), and Veerapandi and Rao (1996). These results also underline the necessity and importance of semicompatibility in fixed point theory ofD-metric spaces. All the results of this paper are new.



Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 512 ◽  
Author(s):  
Erdal Karapınar ◽  
Panda Kumari ◽  
Durdana Lateef

It is very well known that real-life applications of fixed point theory are restricted with the transformation of the problem in the form of f ( x ) = x . (1) The Knaster–Tarski fixed point theorem underlies various approaches of checking the correctness of programs. (2) The Brouwer fixed point theorem is used to prove the existence of Nash equilibria in games. (3) Dlala et al. proposed a solution for magnetic field problems via the fixed point approach.



2017 ◽  
Vol 33 (3) ◽  
pp. 265-274
Author(s):  
MARGARETA-ELIZA BALAZS ◽  

Starting from the results, established in [Albu, M., A fixed point theorem of Maia-Perov type. Studia Univ. Babes¸- Bolyai Math., 23 (1978), No. 1, 76–79] and [Mures¸an, V., Basic problem for Maia-Perov’s fixed point theorem, Seminar on Fixed Point Theory, Babes¸ Bolyai Univ., Cluj-Napoca, (1988), Preprint Nr. 3, pp. 43–48] where fixed point theorems of Maia-Perov type are proved, the main aim of this paper is to extend this results to product metric spaces, using Presiˇ c type operators. An existence, uniqueness and data dependence theorem related to the ´ solution of the system of integral equations of Fredholm type in product metric spaces, is also presented.



2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Wei-Shih Du

We first establish some existence results concerning approximate coincidence point properties and approximate fixed point properties for various types of nonlinear contractive maps in the setting of cone metric spaces and general metric spaces. From these results, we present some new coincidence point and fixed point theorems which generalize Berinde-Berinde's fixed point theorem, Mizoguchi-Takahashi's fixed point theorem, and some well-known results in the literature.



Filomat ◽  
2017 ◽  
Vol 31 (12) ◽  
pp. 3875-3884 ◽  
Author(s):  
Hamid Baghani ◽  
Maryam Ramezani

In this paper, firstly, we introduce the notion of R-complete metric spaces. This notion let us to consider fixed point theorem in R-complete instead of complete metric spaces. Secondly, as motivated by the recent work of Amini-Harandi (Fixed Point Theory Appl. 2012, 2012:215), we explain a new generalized contractive condition for set-valued mappings and prove a fixed point theorem in R-complete metric spaces which extends some well-known results in the literature. Finally, some examples are given to support our main theorem and also we find the existence of solution for a first-order ordinary differential equation.



Symmetry ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 741 ◽  
Author(s):  
Salvador Romaguera ◽  
Pedro Tirado

We obtain quasi-metric versions of the famous Meir–Keeler fixed point theorem from which we deduce quasi-metric generalizations of Boyd–Wong’s fixed point theorem. In fact, one of these generalizations provides a solution for a question recently raised in the paper “On the fixed point theory in bicomplete quasi-metric spaces”, J. Nonlinear Sci. Appl. 2016, 9, 5245–5251. We also give an application to the study of existence of solution for a type of recurrence equations associated to certain nonlinear difference equations.



2018 ◽  
Vol 27 (1) ◽  
pp. 15-20
Author(s):  
VASILE BERINDE ◽  

In a recent paper [Pata, V., A fixed point theorem in metric spaces, J. Fixed Point Theory Appl., 10 (2011), No. 2, 299–305], the author stated and proved a fixed point theorem that is intended to generalize the well known Banach’s contraction mapping principle. In this note we show that the main result in the above paper does not hold at least in two extremal cases for the parameter ε involved in the contraction condition used there. We also present some illustrative examples and related results.



Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3149
Author(s):  
Dingwei Zheng ◽  
Guofei Ye ◽  
Dawei Liu

In this paper, we prove a Sehgal–Guseman-type fixed point theorem in b-rectangular metric spaces which provides a complete solution to an open problem raised by Zoran D. Mitrović (A note on a Banach’s fixed point theorem in b-rectangular metric space and b-metric space). The result presented in the paper generalizes and unifies some results in fixed point theory.



Filomat ◽  
2010 ◽  
Vol 24 (2) ◽  
pp. 1-10 ◽  
Author(s):  
Mujahid Abbas ◽  
Dragan Djoric

Contractive conditions introduced in (Q. Zhang and Y. Song, Fixed point theory for generalized ?-weak contraction, Appl. Math. Lett. 22(2009), 75-78) and (D. Djoric, Common fixed point for generalized (?, ?)-weak contractions, Applied Mathematics Letters, 22(2009), 1896-1900) are employed to obtain a new common fixed point theorem for four maps. Our result substantially generalizes comparable results in the literature. 2010 Mathematics Subject Classifications. 47H10. .



Author(s):  
Mohammed A. Almalahi ◽  
Satish K. Panchal

AbstractIn this article we present the existence and uniqueness results for fractional integro-differential equations with ψ-Hilfer fractional derivative. The reasoning is mainly based upon different types of classical fixed point theory such as the Mönch fixed point theorem and the Banach fixed point theorem. Furthermore, we discuss Eα -Ulam-Hyers stability of the presented problem. Also, we use the generalized Gronwall inequality with singularity to establish continuous dependence and uniqueness of the δ-approximate solution.



Sign in / Sign up

Export Citation Format

Share Document