Comments on some fixed point theorems in metric spaces

2018 ◽  
Vol 27 (1) ◽  
pp. 15-20
Author(s):  
VASILE BERINDE ◽  

In a recent paper [Pata, V., A fixed point theorem in metric spaces, J. Fixed Point Theory Appl., 10 (2011), No. 2, 299–305], the author stated and proved a fixed point theorem that is intended to generalize the well known Banach’s contraction mapping principle. In this note we show that the main result in the above paper does not hold at least in two extremal cases for the parameter ε involved in the contraction condition used there. We also present some illustrative examples and related results.

2005 ◽  
Vol 2005 (5) ◽  
pp. 789-801
Author(s):  
Bijendra Singh ◽  
Shishir Jain ◽  
Shobha Jain

Rhoades (1996) proved a fixed point theorem in a boundedD-metric space for a contractive self-map with applications. Here we establish a more general fixed point theorem in an unboundedD-metric space, for two self-maps satisfying a general contractive condition with a restricted domain ofxandy. This has been done by using the notion of semicompatible maps inD-metric space. These results generalize and improve the results of Rhoades (1996), Dhage et al. (2000), and Veerapandi and Rao (1996). These results also underline the necessity and importance of semicompatibility in fixed point theory ofD-metric spaces. All the results of this paper are new.


2017 ◽  
Vol 33 (3) ◽  
pp. 265-274
Author(s):  
MARGARETA-ELIZA BALAZS ◽  

Starting from the results, established in [Albu, M., A fixed point theorem of Maia-Perov type. Studia Univ. Babes¸- Bolyai Math., 23 (1978), No. 1, 76–79] and [Mures¸an, V., Basic problem for Maia-Perov’s fixed point theorem, Seminar on Fixed Point Theory, Babes¸ Bolyai Univ., Cluj-Napoca, (1988), Preprint Nr. 3, pp. 43–48] where fixed point theorems of Maia-Perov type are proved, the main aim of this paper is to extend this results to product metric spaces, using Presiˇ c type operators. An existence, uniqueness and data dependence theorem related to the ´ solution of the system of integral equations of Fredholm type in product metric spaces, is also presented.


2018 ◽  
Vol 27 (1) ◽  
pp. 37-48
Author(s):  
ANDREI HORVAT-MARC ◽  
◽  
LASZLO BALOG ◽  

In this paper we present an extension of fixed point theorem for self mappings on metric spaces endowed with a graph and which satisfies a Bianchini contraction condition. We establish conditions which ensure the existence of fixed point for a non-self Bianchini contractions T : K ⊂ X → X that satisfy Rothe’s boundary condition T (∂K) ⊂ K.


Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 512 ◽  
Author(s):  
Erdal Karapınar ◽  
Panda Kumari ◽  
Durdana Lateef

It is very well known that real-life applications of fixed point theory are restricted with the transformation of the problem in the form of f ( x ) = x . (1) The Knaster–Tarski fixed point theorem underlies various approaches of checking the correctness of programs. (2) The Brouwer fixed point theorem is used to prove the existence of Nash equilibria in games. (3) Dlala et al. proposed a solution for magnetic field problems via the fixed point approach.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Wei-Shih Du

We first establish some existence results concerning approximate coincidence point properties and approximate fixed point properties for various types of nonlinear contractive maps in the setting of cone metric spaces and general metric spaces. From these results, we present some new coincidence point and fixed point theorems which generalize Berinde-Berinde's fixed point theorem, Mizoguchi-Takahashi's fixed point theorem, and some well-known results in the literature.


2018 ◽  
Vol 10 (1) ◽  
pp. 18-31
Author(s):  
Margareta-Eliza Balazs

Abstract The main aim of this paper is to obtain Maia type fixed point results for Ćirić-Prešić contraction condition, following Ćirić L. B. and Prešić S. B. result proved in [Ćirić L. B.; Prešić S. B. On Prešić type generalization of the Banach contraction mapping principle, Acta Math. Univ. Comenian. (N.S.), 2007, v 76, no. 2, 143–147] and Luong N. V. and Thuan N. X. result in [Luong, N. V., Thuan, N. X., Some fixed point theorems of Prešić-Ćirić type, Acta Univ. Apulensis Math. Inform., No. 30, (2012), 237–249]. We unified these theorems with Maia’s fixed point theorem proved in [Maia, Maria Grazia. Un’osservazione sulle contrazioni metriche. (Italian) Rend. Sem. Mat. Univ. Padova 40 1968 139–143] and the obtained results are proved is the present paper. An example is also provided.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ahmed El-Sayed Ahmed ◽  
Saleh Omran ◽  
Abdalla J. Asad

The aim of this paper is twofold. First, we introduce the concept of quaternion metric spaces which generalizes both real and complex metric spaces. Further, we establish some fixed point theorems in quaternion setting. Secondly, we prove a fixed point theorem in normal cone metric spaces for four self-maps satisfying a general contraction condition.


2021 ◽  
Vol 23 (10) ◽  
pp. 247-266
Author(s):  
B .Malathi ◽  
◽  
S. Chelliah ◽  

The development of a mathematical model based on diffusion has received a great dealof attention in recent years, many scientist and mathematician have tried to apply basicknowledge about the differential equation and the boundary condition to explain anapproximate the diffusion and reaction model. The subject of fractional calculus attracted much attentions and is rapidly growing area of research because of itsnumerous applications in engineering and scientific disciplines such as signal processing, nonlinear control theory, viscoelasticity, optimization theory [1], controlled thermonuclear fusion, chemistry, nonlinear biological systems, mechanics,electric networks, fluid dynamics, diffusion, oscillation, relaxation, turbulence, stochastic dynamical system, plasmaphysics, polymer physics, chemical physics, astrophysics, and economics. Therefore, it deserves an independent theoryparallel to the theory of ordinary differential equations (DEs).In the development of non-linear analysis, fixed point theory plays an important role. Also, it has been widely used in different branches of engineering and sciences. Banach fixed point theory is a essential part of mathematical analysis because of its applications in various area such as variational and linear inequalities, improvement and approximation theory. The fixed-point theorem in diffusion equations plays a significant role to construct methods to solve the problems in sciences and mathematics. Although Banach fixed point theory is a vast field of study and is capable of solving diffusion equations. The main motive of the research is solving the diffusion equations by Banach fixed point theorems and Adomian decomposition method. To analysis the drawbacks of the other fixed-point theorems and different solving methods, the related works are reviewed in this paper.


Sign in / Sign up

Export Citation Format

Share Document