scholarly journals Quantifying the contribution of chromatin dynamics to stochastic gene expression reveals long, locus-dependent periods between transcriptional bursts

BMC Biology ◽  
2013 ◽  
Vol 11 (1) ◽  
pp. 15 ◽  
Author(s):  
José Viñuelas ◽  
Gaël Kaneko ◽  
Antoine Coulon ◽  
Elodie Vallin ◽  
Valérie Morin ◽  
...  
2013 ◽  
Vol 91 (1) ◽  
pp. 42-48 ◽  
Author(s):  
Sheila S. Teves ◽  
Steven Henikoff

Recent studies in transcriptional regulation using the Drosophila heat shock response system have elucidated many of the dynamic regulatory processes that govern transcriptional activation and repression. The classic view that the control of gene expression occurs at the point of RNA polymerase II (Pol II) recruitment is now giving way to a more complex outlook of gene regulation. Promoter chromatin dynamics coordinate with transcription factor binding to maintain the promoters of active genes accessible. For a large number of genes, the rate-limiting step in Pol II progression occurs during its initial elongation, where Pol II transcribes 30–50 bp and pauses for further signals. These paused genes have unique genic chromatin architecture and dynamics compared with genes where Pol II recruitment is rate limiting for expression. Further elongation of Pol II along the gene causes nucleosome turnover, a continuous process of eviction and replacement, which suggests a potential mechanism for Pol II transit along a nucleosomal template. In this review, we highlight recent insights into transcription regulation of the heat shock response and discuss how the dynamic regulatory processes involved at each transcriptional stage help to generate faithful yet highly responsive gene expression.


2020 ◽  
Vol 7 (7) ◽  
pp. 191243
Author(s):  
Ayoub Lasri ◽  
Viktorija Juric ◽  
Maité Verreault ◽  
Franck Bielle ◽  
Ahmed Idbaih ◽  
...  

Glioblastoma (GBM) is the most aggressive malignant primary brain tumour with a median overall survival of 15 months. To treat GBM, patients currently undergo a surgical resection followed by exposure to radiotherapy and concurrent and adjuvant temozolomide (TMZ) chemotherapy. However, this protocol often leads to treatment failure, with drug resistance being the main reason behind this. To date, many studies highlight the role of O-6-methylguanine-DNA methyltransferase (MGMT) in conferring drug resistance. The mechanism through which MGMT confers resistance is not well studied—particularly in terms of computational models. With only a few reasonable biological assumptions, we were able to show that even a minimal model of MGMT expression could robustly explain TMZ-mediated drug resistance. In particular, we showed that for a wide range of parameter values constrained by novel cell growth and viability assays, a model accounting for only stochastic gene expression of MGMT coupled with cell growth, division, partitioning and death was able to exhibit phenotypic selection of GBM cells expressing MGMT in response to TMZ. Furthermore, we found this selection allowed the cells to pass their acquired phenotypic resistance onto daughter cells in a stable manner (as long as TMZ is provided). This suggests that stochastic gene expression alone is enough to explain the development of chemotherapeutic resistance.


2004 ◽  
Vol 1 (4) ◽  
pp. 197-204 ◽  
Author(s):  
Rajesh Karmakar ◽  
Indrani Bose

Sign in / Sign up

Export Citation Format

Share Document