scholarly journals Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis

2010 ◽  
Vol 4 (1) ◽  
Author(s):  
Carola Huthmacher ◽  
Andreas Hoppe ◽  
Sascha Bulik ◽  
Hermann-Georg Holzhütter
2013 ◽  
Vol 11 (04) ◽  
pp. 1350003 ◽  
Author(s):  
MANOJ KUMAR YADAV ◽  
SAURABH KUMAR PANDEY ◽  
D. SWATI

The genome sequence of Plasmodium falciparum reveals that many metabolic pathways are unique as compared to its human host. Metabolic Network Analysis was carried out to find the essential enzymes critical for the survival of the pathogen. In the present study, choke point and load point analysis was used to locate putative targets. The identified targets were further checked to confirm that no alternate pathway or human homolog exists. Among the top 15 enzymes obtained from this analysis, we have selected P. falciparum orotidine-5'-monophosphate decarboxylase (PfODCase) enzyme as it is sequentially and structurally different from that of humans, for searching novel inhibitors. A five-point 3D pharmacophore was generated for the crystal structure of PfODCase complexes with uridine-5'-monophosphate (U5P). The binding site environment shows three H-bond acceptors, one H-bond donor and one negative ionizable feature. This pharmacophore model was used as a 3D query to perform virtual screening experiments against 2,664,779 standard lead compounds obtained from the freely available ZINC database. Top 10 hits obtained from virtual screening were selected for molecular docking experiments against PfODCase in order to verify their results and to have a better insight into their binding modes. Here, docking of U5P with PfODCase is used as a control. We have identified six compounds, among them, few are U5P analogs and others are novel ones with diverse scaffolds. The key residues: Lys42, Asp20, Lys72, Ser127, Ala184, Gln185 and Arg203 at the main binding pocket of PfODCase are responsible for better stability of diverse ligands. These compounds according to their free energy of binding could serve as potent leads for designing novel inhibitors against malarial ODCase enzyme.


PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e85195 ◽  
Author(s):  
Yong-Yeol Ahn ◽  
Deok-Sun Lee ◽  
Henry Burd ◽  
William Blank ◽  
Vinayak Kapatral

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Jelili Oyelade ◽  
Itunuoluwa Isewon ◽  
Efosa Uwoghiren ◽  
Olufemi Aromolaran ◽  
Olufunke Oladipupo

Malaria is an infectious disease that affects close to half a million individuals every year and Plasmodium falciparum is a major cause of malaria. The treatment of this disease could be done effectively if the essential enzymes of this parasite are specifically targeted. Nevertheless, the development of the parasite in resisting existing drugs now makes discovering new drugs a core responsibility. In this study, a novel computational model that makes the prediction of new and validated antimalarial drug target cheaper, easier, and faster has been developed. We have identified new essential reactions as potential targets for drugs in the metabolic network of the parasite. Among the top seven (7) predicted essential reactions, four (4) have been previously identified in earlier studies with biological evidence and one (1) has been with computational evidence. The results from our study were compared with an extensive list of seventy-seven (77) essential reactions with biological evidence from a previous study. We present a list of thirty-one (31) potential candidates for drug targets in Plasmodium falciparum which includes twenty-four (24) new potential candidates for drug targets.


2014 ◽  
Vol 15 (4) ◽  
pp. 374-409 ◽  
Author(s):  
Tabish Qidwai ◽  
Avantika Priya ◽  
Nihal Khan ◽  
Himanshu Tripathi ◽  
Feroz Khan ◽  
...  

2021 ◽  
Vol 22 (15) ◽  
pp. 7974
Author(s):  
Yu-Te Lin ◽  
Yong-Shiou Lin ◽  
Wen-Ling Cheng ◽  
Jui-Chih Chang ◽  
Yi-Chun Chao ◽  
...  

Spinocerebellar ataxia type 3 (SCA3) is a genetic neurodegenerative disease for which a cure is still needed. Growth hormone (GH) therapy has shown positive effects on the exercise behavior of mice with cerebellar atrophy, retains more Purkinje cells, and exhibits less DNA damage after GH intervention. Insulin-like growth factor 1 (IGF-1) is the downstream mediator of GH that participates in signaling and metabolic regulation for cell growth and modulation pathways, including SCA3-affected pathways. However, the underlying therapeutic mechanisms of GH or IGF-1 in SCA3 are not fully understood. In the present study, tissue-specific genome-scale metabolic network models for SCA3 transgenic mice were proposed based on RNA-seq. An integrative transcriptomic and metabolic network analysis of a SCA3 transgenic mouse model revealed that metabolic signaling pathways were activated to compensate for the metabolic remodeling caused by SCA3 genetic modifications. The effect of IGF-1 intervention on the pathology and balance of SCA3 disease was also explored. IGF-1 has been shown to invoke signaling pathways and improve mitochondrial function and glycolysis pathways to restore cellular functions. As one of the downregulated factors in SCA3 transgenic mice, IGF-1 could be a potential biomarker and therapeutic target.


mSystems ◽  
2021 ◽  
Author(s):  
Matthew L. Jenior ◽  
Jhansi L. Leslie ◽  
Deborah A. Powers ◽  
Elizabeth M. Garrett ◽  
Kimberly A. Walker ◽  
...  

Clostridioides difficile has become the leading single cause of hospital-acquired infections. Numerous studies have demonstrated the importance of specific metabolic pathways in aspects of C. difficile pathophysiology, from initial colonization to regulation of virulence factors.


2014 ◽  
Vol 59 (1) ◽  
pp. 356-364 ◽  
Author(s):  
Wesley Wu ◽  
Zachary Herrera ◽  
Danny Ebert ◽  
Katie Baska ◽  
Seok H. Cho ◽  
...  

ABSTRACTThe apicoplast is an essential plastid organelle found inPlasmodiumparasites which contains several clinically validated antimalarial-drug targets. A chemical rescue screen identified MMV-08138 from the “Malaria Box” library of growth-inhibitory antimalarial compounds as having specific activity against the apicoplast. MMV-08138 inhibition of blood-stagePlasmodium falciparumgrowth is stereospecific and potent, with the most active diastereomer demonstrating a 50% effective concentration (EC50) of 110 nM. Whole-genome sequencing of 3 drug-resistant parasite populations from two independent selections revealed E688Q and L244I mutations inP. falciparumIspD, an enzyme in the MEP (methyl-d-erythritol-4-phosphate) isoprenoid precursor biosynthesis pathway in the apicoplast. The active diastereomer of MMV-08138 directly inhibited PfIspD activityin vitrowith a 50% inhibitory concentration (IC50) of 7.0 nM. MMV-08138 is the first PfIspD inhibitor to be identified and, together with heterologously expressed PfIspD, provides the foundation for further development of this promising antimalarial drug candidate lead. Furthermore, this report validates the use of the apicoplast chemical rescue screen coupled with target elucidation as a discovery tool to identify specific apicoplast-targeting compounds with new mechanisms of action.


Sign in / Sign up

Export Citation Format

Share Document