scholarly journals Assessing thermal resistance of wet suits on human subjects during aquatic activity by a heat flux method

2015 ◽  
Vol 4 (S1) ◽  
Author(s):  
Bernard Redortier ◽  
Emmanuelle Brossard ◽  
Remi Tillol ◽  
Remi Goffinet
2014 ◽  
Vol 39 (17) ◽  
pp. 9534-9544 ◽  
Author(s):  
Yong He ◽  
Zhihua Wang ◽  
Wubin Weng ◽  
Yanqun Zhu ◽  
Junhu Zhou ◽  
...  

2021 ◽  
Author(s):  
Xiao-jian Wang ◽  
Liang-Bi Wang

Abstract The most common non-granular fillers are sheet and fiber. When they are distributed along the heat flux direction, the thermal conductivity of composite increases greatly. Meanwhile, the filler contact also has large effect on the thermal conductivity. However, the effect of filler contact on the thermal conductivity of composite with directional fillers has not been investigated. In this paper, the combined effects of filler contact, content and orientation are investigated. The results show that the effect of filler orientation on the thermal conductivity is greater than filler contact in low filler content, and exact opposite in high filler content. The effect of filler contact on fibrous and sheet fillers is far greater than cube and sphere fillers. This rule is affected by the filler contact. The filler content of 8% is the ideal percolation threshold of composite with fibrous and sheet filler. It is lower than cube filler and previous reports. The space for thermal conductivity growth of composite with directional filler is still very large. The effect of interfacial thermal resistance should be considered in predicting the thermal conductivity of composite under high Rc (>10-4).


2003 ◽  
Vol 125 (1) ◽  
pp. 104-113 ◽  
Author(s):  
Chang-Yuan Liu ◽  
Ying-Huei Hung

Both experimental and theoretical investigations on the heat transfer and flow friction characteristics of compact cold plates have been performed. From the results, the local and average temperature rises on the cold plate surface increase with increasing chip heat flux or decreasing air mass flow rate. Besides, the effect of chip heat flux on the thermal resistance of cold plate is insignificant; while the thermal resistance of cold plate decreases with increasing air mass flow rate. Three empirical correlations of thermal resistance in terms of air mass flow rate with a power of −0.228 are presented. As for average Nusselt number, the effect of chip heat flux on the average Nusselt number is insignificant; while the average Nusselt number of the cold plate increases with increasing Reynolds number. An empirical relationship between Nu¯cp and Re can be correlated. In the flow frictional aspect, the overall pressure drop of the cold plate increases with increasing air mass flow rate; while it is insignificantly affected by chip heat flux. An empirical correlation of the overall pressure drop in terms of air mass flow rate with a power of 1.265 is presented. Finally, both heat transfer performance factor “j” and pumping power factor “f” decrease with increasing Reynolds number in a power of 0.805; while they are independent of chip heat flux. The Colburn analogy can be adequately employed in the study.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Bharath Ramakrishnan ◽  
Yaser Hadad ◽  
Sami Alkharabsheh ◽  
Paul R. Chiarot ◽  
Bahgat Sammakia

Data center energy usage keeps growing every year and will continue to increase with rising demand for ecommerce, scientific research, social networking, and use of streaming video services. The miniaturization of microelectronic devices and an increasing demand for clock speed result in high heat flux systems. By adopting direct liquid cooling, the high heat flux and high power demands can be met, while the reliability of the electronic devices is greatly improved. Cold plates which are mounted directly on to the chips facilitate a lower thermal resistance path originating from the chip to the incoming coolant. An attempt was made in the current study to characterize a commercially available cold plate which uses warm water in carrying the heat away from the chip. A mock package mimicking a processor chip with an effective heat transfer area of 6.45 cm2 was developed for this study using a copper block heater arrangement. The thermo-hydraulic performance of the cold plates was investigated by conducting experiments at varying chip power, coolant flow rates, and coolant temperature. The pressure drop (ΔP) and the temperature rise (ΔT) across the cold plates were measured, and the results were presented as flow resistance and thermal resistance curves. A maximum heat flux of 31 W/cm2 was dissipated at a flow rate of 13 cm3/s. A resistance network model was used to calculate an effective heat transfer coefficient by revealing different elements contributing to the total resistance. The study extended to different coolant temperatures ranging from 25 °C to 45 °C addresses the effect of coolant viscosity on the overall performance of the cold plate, and the results were presented as coefficient of performance (COP) curves. A numerical model developed using 6SigmaET was validated against the experimental findings for the flow and thermal performance with minimal percentage difference.


Sign in / Sign up

Export Citation Format

Share Document