scholarly journals Effect of dural inflammatory soup application on activation and sensitization markers in the caudal trigeminal nucleus of the rat and the modulatory effects of sumatriptan and kynurenic acid

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Eleonóra Spekker ◽  
Klaudia Flóra Laborc ◽  
Zsuzsanna Bohár ◽  
Gábor Nagy-Grócz ◽  
Annamária Fejes-Szabó ◽  
...  

Abstract Background The topical inflammatory soup can model the inflammation of the dura mater causing hypersensitivity and activation of the trigeminal system, a phenomenon present in migraineurs. Calcitonin gene-related peptide, transient receptor potential vanilloid-1 receptor, and neuronal nitric oxide synthase are important in the sensitization process there. 5-HT1B/1D receptor agonists, triptans are used as a treatment of migraine. Kynurenic acid an NMDA antagonist can act on structures involved in trigeminal activation. Aim We investigated the effect of inflammatory soup induced dural inflammation on the calcitonin gene-related peptide, transient receptor potential vanilloid-1 receptor, and neuronal nitric oxide synthase levels in the caudal trigeminal nucleus. We also tested whether pretreatment with a well-known antimigraine drug, such as sumatriptan and kynurenic acid, a compound with a different mechanism of action, can affect these changes and if their modulatory effects are comparable. Material and methods After subcutaneous sumatriptan or intraperitoneal kynurenic acid the dura mater of adult male Sprague-Dawley rats (n = 72) was treated with inflammatory soup or its vehicle (synthetic interstitial fluid). Two and a half or four hours later perfusion was performed and the caudal trigeminal nucleus was removed for immunohistochemistry. Results and conclusion Inflammatory soup increased calcitonin gene-related peptide, transient receptor potential vanilloid-1 receptor, and neuronal nitric oxide synthase in the caudal trigeminal nucleus compared to placebo, which was attenuated by sumatriptan and kynurenic acid. This suggests the involvement of 5-HT1B/1D and NMDA receptors in neurogenic inflammation development of the dura and thus in migraine attacks.

2021 ◽  
Vol 22 (7) ◽  
pp. 3360
Author(s):  
Mee-Ra Rhyu ◽  
Yiseul Kim ◽  
Vijay Lyall

In addition to the sense of taste and olfaction, chemesthesis, the sensation of irritation, pungency, cooling, warmth, or burning elicited by spices and herbs, plays a central role in food consumption. Many plant-derived molecules demonstrate their chemesthetic properties via the opening of transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential vanilloid 1 (TRPV1) channels. TRPA1 and TRPV1 are structurally related thermosensitive cation channels and are often co-expressed in sensory nerve endings. TRPA1 and TRPV1 can also indirectly influence some, but not all, primary taste qualities via the release of substance P and calcitonin gene-related peptide (CGRP) from trigeminal neurons and their subsequent effects on CGRP receptor expressed in Type III taste receptor cells. Here, we will review the effect of some chemesthetic agonists of TRPA1 and TRPV1 and their influence on bitter, sour, and salt taste qualities.


2013 ◽  
Vol 305 (9) ◽  
pp. G638-G648 ◽  
Author(s):  
Michael E. Kiyatkin ◽  
Bin Feng ◽  
Erica S. Schwartz ◽  
G. F. Gebhart

The ligand-gated channels transient receptor potential vanilloid 1 (TRPV1) and P2X3 have been reported to facilitate colorectal afferent neuron sensitization, thus contributing to organ hypersensitivity and pain. In the present study, we hypothesized that TRPV1 and P2X3 cooperate to modulate colorectal nociception and afferent sensitivity. To test this hypothesis, we employed TRPV1-P2X3 double knockout (TPDKO) mice and channel-selective pharmacological antagonists and evaluated combined channel contributions to behavioral responses to colorectal distension (CRD) and afferent fiber responses to colorectal stretch. Baseline responses to CRD were unexpectedly greater in TPDKO compared with control mice, but zymosan-produced CRD hypersensitivity was absent in TPDKO mice. Relative to control mice, proportions of mechanosensitive and -insensitive pelvic nerve afferent classes were not different in TPDKO mice. Responses of mucosal and serosal class afferents to mechanical probing were unaffected, whereas responses of muscular (but not muscular/mucosal) afferents to stretch were significantly attenuated in TPDKO mice; sensitization of both muscular and muscular/mucosal afferents by inflammatory soup was also significantly attenuated. In pharmacological studies, the TRPV1 antagonist A889425 and P2X3 antagonist TNP-ATP, alone and in combination, applied onto stretch-sensitive afferent endings attenuated responses to stretch; combined antagonism produced greater attenuation. In the aggregate, these observations suggest that 1) genetic manipulation of TRPV1 and P2X3 leads to reduction in colorectal mechanosensation peripherally and compensatory changes and/or disinhibition of other channels centrally, 2) combined pharmacological antagonism produces more robust attenuation of mechanosensation peripherally than does antagonism of either channel alone, and 3) the relative importance of these channels appears to be enhanced in colorectal hypersensitivity.


Cardiology ◽  
2016 ◽  
Vol 134 (4) ◽  
pp. 436-443 ◽  
Author(s):  
Jiayan Lei ◽  
Fengxi Zhu ◽  
Yi Zhang ◽  
Lixiao Duan ◽  
Han Lei ◽  
...  

Objective: A high mortality rate occurs with silent myocardial infarction (MI), particularly in aging and diabetic populations due to defects in the transient receptor potential vanilloid (TRPV1)-positive sensory nerve function. We have previously shown that TRPV1 deficiency markedly enhances post-MI inflammation and remodeling. However, the mechanisms remain unknown. The objective of this study was to clarify whether calcitonin gene-related peptide (CGRP) release was associated with the protective role of TRPV1 against postmyocardial inflammation and apoptosis. Methods: TRPV1 gene knockout (TRPV1KO) and wild-type (WT) mice were subjected to left anterior descending ligation or sham operation. The concentration of CGRP in the myocardium was measured at 30 min, 1, 6 and 24 h post-MI. Mice received saline vehicle, CGRP or the CGRP antagonist CGRP8-37 before ligation. Inflammation was evaluated by ELISA assay and histological staining. Apoptosis was assessed by Western blot and TUNEL assay. Results: Post-MI, both TRPV1KO and WT mice displayed elevated CGRP levels in myocardium when compared to sham controls. However, the levels of CGRP were significantly lower in TRPV1KO mice than in WT mice at 30 min after MI. Exogenous CGRP downregulated the levels of tumor necrosis factor-α and interleukin-6 expression in TRPV1KO mice post-MI. Moreover, exogenous CGRP decreased the neutrophil infiltration in TRPV1KO mice, whereas inhibition of CGRP by CGRP8-37 increased the neutrophil infiltration in WT mice. Western blotting data indicated that CGRP attenuated caspase-3 and caspase-9 expression, and enhanced Bcl-2 expression in TRPV1KO mice post-MI. CGRP8-37 upregulated caspase-3 and caspase-9 expression and downregulated Bcl-2 expression in WT mice. Conclusion: Our data suggest a protective role of TRPV1 activation against inflammation and apoptosis in mice post-MI, possibly through CGRP release. These findings elucidate a neurogenic mechanism in mice post-MI, which may participate in sensory neurotransmitter-mediated protection in TRPV1 activation.


Sign in / Sign up

Export Citation Format

Share Document