colonic inflammation
Recently Published Documents


TOTAL DOCUMENTS

596
(FIVE YEARS 146)

H-INDEX

54
(FIVE YEARS 8)

Author(s):  
Mouna Rahabi ◽  
Marie Salon ◽  
Christelle Bruno-Bonnet ◽  
Mélissa Prat ◽  
Godefroy Jacquemin ◽  
...  

Abstract Purpose Particular interest is now given to the potential of dietary supplements as alternative non-pharmacological approaches in intestinal inflammation handling. In this aim, this study evaluates the efficiency of fish collagen peptides, Naticol®Gut, on colonic inflammation. Methods Wild type and Mannose receptor-deficient in the myeloid lineage C57BL/6 mice were administered with Dextran Sodium Sulfate (DSS), Naticol®Gut, DSS, and Naticol®Gut or only water for 4 or 8 days. Inflammatory status was evaluated by establishing macroscopic and microscopic scores, by measuring cytokine and calprotectin production by ELISA and the myeloperoxidase activity by chemiluminescence. Colonic macrophages were phenotyped by measuring mRNA levels of specific markers of inflammation and oxidative status. Colonic immune populations and T-cell activation profiles were determined by flow cytometry. Mucosa-associated gut microbiota assessment was undertaken by qPCR. The phenotype of human blood monocytes from inflammatory bowel disease (IBD) subjects was characterized by RT-qPCR and flow cytometry and their oxidative activity by chemiluminescence. Results Naticol®Gut-treated DSS mice showed attenuated colonic inflammation compared to mice that were only exposed to DSS. Naticol®Gut activity was displayed through its ability to orient the polarization of colonic macrophage towards an anti-inflammatory and anti-oxidant phenotype after its recognition by the mannose receptor. Subsequently, Naticol®Gut delivery modulated CD4 T cells in favor of a Th2 response and dampened CD8 T-cell activation. This immunomodulation resulted in an intestinal eubiosis. In human monocytes from IBD subjects, the treatment with Naticol®Gut also restored an anti-inflammatory and anti-oxidant phenotype. Conclusion Naticol®Gut acts as a protective agent against colitis appearing as a new functional food and an innovative and complementary approach in gut health.


2022 ◽  
Vol 19 (1) ◽  
Author(s):  
Yun Yang ◽  
Xiu-Ming Li ◽  
Jing-Ru Wang ◽  
Yan Li ◽  
Wen-Long Ye ◽  
...  

Abstract Background TRIP6 is a zyxin family member that serves as an adaptor protein to regulate diverse biological processes. In prior reports, TRIP6 was shown to play a role in regulating inflammation. However, its in vivo roles and mechanistic importance in colitis remain largely elusive. Herein, we therefore employed TRIP6-deficient (TRIP6−/−) mice in order to explore the mechanistic importance of TRIP6 in a dextran sodium sulfate (DSS)-induced model of murine colitis. Findings Wild-type (TRIP6+/+) mice developed more severe colitis following DSS-mediated disease induction relative to TRIP6−/− mice, as evidenced by more severe colonic inflammation and associated crypt damage. TRIP6 expression in wild-type mice was significantly elevated following DSS treatment. Mechanistically, TRIP6 binds to TRAF6 and enhances oligomerization and autoubiquitination of TRAF6. This leads to the activation of NF-κB signaling and the expression of pro-inflammatory cytokines such as TNFα and IL-6, in the in vivo mouse model of colitis. Conclusions These in vivo data demonstrate that TRIP6 serves as a positive regulator of DSS-induced colitis through interactions with TRAF6 resulting in the activation of inflammatory TRAF6 signaling, highlighting its therapeutic promise as a protein that theoretically can be targeted to prevent or treat colitis.


Author(s):  
Fan Wan ◽  
Mengyu Wang ◽  
Ruqing Zhong ◽  
Liang Chen ◽  
Hui Han ◽  
...  

Colitis, a chronic inflammatory bowel disease, is characterized by bloody diarrhea and inflammation in the colon. Lonicera hypoglauca (“Shanyinhua” in Chinese) and Scutellaria baicalensis (“Huangqin” in Chinese) are two traditional Chinese medicinal plants rich in polyphenols, such as chlorogenic acid (CGA) and baicalin (BA), with the effects of anti-inflammation and antioxidation. However, it remains unknown whether extracts from L. hypoglauca and S. baicalensis (LSEs) could mitigate colonic inflammation. In the present study, ICR mice (22.23 ± 1.65 g) were allocated to three groups treated with chow diet without (CON) or with dextran sulfate sodium (DSS) (CON+DSS) in water or LSE supplementation in diet with DSS (LSE+DSS), and then inflammatory and oxidative parameters and colonic microbiota were detected. The results showed that LSE (500 mg/kg) treatment mitigated DSS-induced colitis symptoms and restored the shortened colon length, the increased disease activity index (DAI), and the damaged intestinal barrier. In serum, LSE supplementation significantly decreased levels of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and lipopolysaccharide (LPS) and increased IL-10 level. Meanwhile, superoxide dismutase (SOD) and catalase (CAT) were increased, and malondialdehyde (MDA) and reactive oxygen species (ROS) levels were decreased. In the colon tissue, qPCR results showed that LSE supplementation dramatically downregulated the transcriptional expression of IL-1β, IL-6, TNF-α, and MDA and upregulated the expression of SOD1, CAT, and IL-10. Additionally, the damaged gut barriers occludin and zonula occludens-1 (ZO-1) in the CON+DSS group were enhanced with LSE supplementation. Furthermore, LSE treatment regulated the gut microbial communities with higher relative abundance of Dubosiella and Ruminococcus torques group and lower relative abundance of Bacteroides and Turicibacter. Moreover, the contents of short-chain fatty acids (SCFAs) as products of gut microbiota were also increased. Correlation analysis showed that the mRNA expression of SOD1 was negatively correlated with TNF-α (r = -0.900, P < 0.05); the mRNA expression of IL-6 (r = -0.779, P < 0.05) and TNF-α (r = -0.703, P < 0.05) had a dramatically negative correlation with Dubosiella. In conclusion, LSE supplementation could effectively ameliorate inflammation by modulating oxidative stress and gut microbiota in a colitis mouse model.


2022 ◽  
Author(s):  
Lei Wang ◽  
Pan Zhang ◽  
Chao Li ◽  
Fei Xu ◽  
Jie Chen

Obesity-induced colonic inflammation-stimulated colitis is one of the main causes of colorectal cancer. Dietary polysaccharides are considered an effective agent for relieving obesity-induced inflammatory diseases such as diabetes and colitis....


2021 ◽  
Vol 2 ◽  
Author(s):  
Stanley M. Cheatham ◽  
Karan H. Muchhala ◽  
Eda Koseli ◽  
Joanna C. Jacob ◽  
Essie Komla ◽  
...  

Opioids and non-steroidal anti-inflammatory drugs (NSAIDs) are excellent analgesics, but recent clinical evidence suggests that these drugs might worsen disease severity in Crohn's disease patients, limiting their clinical utility for treating Inflammatory Bowel Disease (IBD). One indicator of change in well-being from conditions such as IBD is behavioral depression and disruption to activities of daily living. Preclinical measures of behavioral depression can provide an indicator of changes in quality of life and subsequent modification by candidate analgesics. In mice, nesting is an adaptive unconditioned behavior that is susceptible to disruption by noxious stimuli, and some types of pain related nesting depression are responsive to opioid and NSAID analgesics. Here we show that a 2, 4, 6-trinitrobenzene sulfonic acid (TNBS) model of experimental colitis depresses nesting behavior in mice, and we evaluated effects of morphine, an opioid, and ketoprofen, a NSAID, on TNBS-induced nesting depression. In Swiss Webster mice, TNBS significantly reduced nesting that peaked on Day 3 and recovered in a time-dependent manner with complete recovery by Day 7. In the absence of colonic inflammation, daily treatment with morphine (1–10 mg/kg) did not decrease nesting except at 10mg/kg/day. However, in TNBS-treated mice 3.2 mg/kg/day morphine significantly exacerbated TNBS-induced nesting depression and delayed recovery. While 3.2 mg/kg/day morphine alone did not alter locomotor activity and TNBS-induced depression of locomotion recovered, the combination of TNBS and 3.2 mg/kg/day morphine significantly attenuated locomotion and prevented recovery. Daily treatment with 3.2 or 10 mg/kg ketoprofen in TNBS-treated mice did not prevent depression of nesting. These data suggest that opioid analgesics but not NSAIDS worsen colonic inflammation-induced behavioral depression. Furthermore, these findings highlight the importance of evaluating analgesic effects in models of colonic inflammation induced depression of behavior.


Author(s):  
Bo Wu ◽  
Lihua Qiang ◽  
Yong Zhang ◽  
Yesheng Fu ◽  
Mengyuan Zhao ◽  
...  
Keyword(s):  

Author(s):  
Noemi Fiaschini ◽  
Anna Negroni ◽  
Francesca Palone ◽  
Roberta Vitali ◽  
Eleonora Colantoni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document