scholarly journals Upregulation of miR-361-3p suppresses serotonin-induced proliferation in human pulmonary artery smooth muscle cells by targeting SERT

2020 ◽  
Vol 25 (1) ◽  
Author(s):  
Ying Zhang ◽  
Yongbin Chen ◽  
Guo Chen ◽  
Yingling Zhou ◽  
Hua Yao ◽  
...  

Abstract Background Abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs) is a key mechanism in pulmonary arterial hypertension (PAH). Serotonin (5-hydroxytryptamine, 5-HT) can induce abnormal proliferation of PASMCs. The role of miR-361-3p in serotonin-induced abnormal PASMCs proliferation remains unclear. Methods The miR-361-3p level was analyzed in plasma from PAH patients and normal controls and in human PASMCs (hPASMCs) using RT-PCR. The hPASMCs were transfected with an miR-361-3p mimic and then treated with serotonin. Untransfected hPASMCs were used as the control. Cell proliferation was evaluated using an MTS assay and 5-ethynyl-2′-deoxyuridine (EdU) staining. The cell cycle stages were evaluated using flow cytometry. The association between miR-361-3p and serotonin transporter (SERT) was determined using a luciferase reporter assay and anti-AGO2 RNA immunoprecipitation assay. The protein expression was evaluated via western blotting. Results The miR-361-3p level was lower in plasma from PAH patients than in plasma from the any of the normal control subjects. The mean pulmonary arterial pressure, pulmonary vascular resistance and pulmonary vascular resistance index were higher in PAH patients whose miR-361-3p level was lower than the median value for patients than in those whose miR-361-3p level was higher than the median. Serotonin treatment reduced miR-361-3p expression in the hPASMCs. MiR-361-3p overexpression suppressed cell proliferation, promoted apoptosis, induced G1 arrest, and decreased the phosphorylation level of ERK1/2 in serotonin-treated hPASMCs. SERT was identified as an miR-361-3p target. Its overexpression alleviated the effect of miR-361-3p overexpression on serotonin-induced hPASMC proliferation and upregulation of phosphorylated ERK1/2. Conclusions The miR-361-3p level is lower in the plasma of PAH patients. Upregulation of miR-361-3p suppresses serotonin-induced proliferation of hPASMCs by targeting SERT. Our results suggest that miR-361-3p is a potential therapeutic target in PAH.

Metabolites ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 87 ◽  
Author(s):  
Abdulwahab Alamri ◽  
Abdulhadi Burzangi ◽  
Paul Coats ◽  
David Watson

Pulmonary arterial hypertension (PAH) is a multi-factorial disease characterized by the hyperproliferation of pulmonary artery smooth muscle cells (PASMCs). Excessive reactive oxygen species (ROS) formation resulted in alterations of the structure and function of pulmonary arterial walls, leading to right ventricular failure and death. Diabetes mellitus has not yet been implicated in pulmonary hypertension. However, recently, variable studies have shown that diabetes is correlated with pulmonary hypertension pathobiology, which could participate in the modification of pulmonary artery muscles. The metabolomic changes in PASMCs were studied in response to 25 mM of D-glucose (high glucose, or HG) in order to establish a diabetic-like condition in an in vitro setting, and compared to five mM of D-glucose (normal glucose, or LG). The effect of co-culturing these cells with an ideal blood serum concentration of cholecalciferol-D3 and tocopherol was also examined. The current study aimed to examine the role of hyperglycemia in pulmonary arterial hypertension by the quantification and detection of the metabolomic alteration of smooth muscle cells in high-glucose conditions. Untargeted metabolomics was carried out using hydrophilic interaction liquid chromatography and high-resolution mass spectrometry. Cell proliferation was assessed by cell viability and the [3H] thymidine incorporation assay, and the redox state within the cells was examined by measuring reactive oxygen species (ROS) generation. The results demonstrated that PASMCs in high glucose (HG) grew, proliferated faster, and generated higher levels of superoxide anion (O2·−) and hydrogen peroxide (H2O2). The metabolomics of cells cultured in HG showed that the carbohydrate pathway, especially that of the upper glycolytic pathway metabolites, was influenced by the activation of the oxidation pathway: the pentose phosphate pathway (PPP). The amount of amino acids such as aspartate and glutathione reduced via HG, while glutathione disulfide, N6-Acetyl-L-lysine, glutamate, and 5-aminopentanoate increased. Lipids either as fatty acids or glycerophospholipids were downregulated in most of the metabolites, with the exception of docosatetraenoic acid and PG (16:0/16:1(9Z)). Purine and pyrimidine were influenced by hyperglycaemia following PPP oxidation. The results in addition showed that cells exposed to 25 mM of glucose were oxidatively stressed comparing to those cultured in five mM of glucose. Cholecalciferol (D3, or vitamin D) and tocopherol (vitamin E) were shown to restore the redox status of many metabolic pathways.


2005 ◽  
Vol 288 (1) ◽  
pp. L202-L211 ◽  
Author(s):  
N. N. Chattergoon ◽  
F. M. D'Souza ◽  
W. Deng ◽  
H. Chen ◽  
A. L. Hyman ◽  
...  

Pulmonary hypertension is characterized by vascular remodeling involving smooth muscle cell proliferation and migration. Calcitonin gene-related peptide (CGRP) and nitric oxide (NO) are potent vasodilators, and the inhibition of aortic smooth muscle cell (ASMC) proliferation by NO has been documented, but less is known about the effects of CGRP. The mechanism by which overexpression of CGRP inhibits proliferation in pulmonary artery smooth muscle cells (PASMC) and ASMC following in vitro transfection by the gene coding for prepro-CGRP was investigated. Increased expression of p53 is known to stimulate p21, which inhibits G1 cyclin/cdk complexes, thereby inhibiting cell proliferation. We hypothesize that p53 and p21 are involved in the growth inhibitory effect of CGRP. In this study, CGRP was shown to inhibit ASMC and PASMC proliferation. In PASMC transfected with CGRP and exposed to a PKA inhibitor (PKAi), cell proliferation was restored. p53 and p21 expression increased in CGRP-treated cells but decreased in cells treated with CGRP and PKAi. PASMC treated with CGRP and a PKG inhibitor (PKGi) recovered from inhibition of proliferation induced by CGRP. ASMC treated with CGRP and then PKAi or PKGi recovered only when exposed to the PKAi and not PKGi. Although CGRP is thought to act through a cAMP-dependent pathway, cGMP involvement in the response to CGRP has been reported. It is concluded that p53 plays a role in CGRP-induced inhibition of cell proliferation and cAMP/PKA appears to mediate this effect in ASMC and PASMC, whereas cGMP appears to be involved in PASMC proliferation.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Ying Yu ◽  
Olga Safrina ◽  
Oleksandr Platoshyn ◽  
Michael D Cahalan ◽  
Lewis J Rubin ◽  
...  

Background & Hypothesis: Excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) and sustained pulmonary vasoconstriction are thought to play critical roles in the development of idiopathic pulmonary arterial hypertension (IPAH). Recently, we demonstrated that upregulation of the canonical transient receptor potential 6 (TRPC6) channel contributes to excessive proliferation of PASMCs isolated from IPAH patients. This study aimed at characterizing whether up-regulated TRPC6 expression affects resting cytosolic [Ca 2+ ] ([Ca 2+ ] cyt ) level and Ca 2+ entry in PASMCs of IPAH patients. Methods & Results: [Ca 2+ ] cyt was measured by fluorescence ratio video imaging with the Ca 2+ indicator fura-2. 1-Oleoyl-2-acetyl-sn-glycerol (OAG), a cell-permeable diacylglycerol analog that activates TRPC6 channels, was used to stimulate channel activities in the presence of extracellular Ca 2+ . The resting [Ca 2+ ] cyt andOAG-mediated increase in [Ca 2+ ]cyt were significantly higher in PASMCs from IPAH patients compared to PASMCs isolated from secondary pulmonary artery hypertension and normotensive patients. In PASMCs from IPAH patients, inhibition of TRPC6 expression by adenovirus-mediated siRNA specifically targeted the human TRPC6 gene led to an approximately 90% reduction of TRPC6 mRNA and protein levels and significantly attenuated OAG-mediated increase in [Ca 2+ ] cyt . Treatment of the IPAH-PASMCs with siRNA also decreased the resting [Ca 2+ ] cyt and significantly inhibited cell proliferation in comparison to cells treated with scrambled control siRNA. Furthermore, exogenous overexpression of human TRPC6 increased the resting [Ca 2+ ] cyt and enhanced OAG-mediated Ca 2+ entry in normal PASMCs. C onclusions: These results suggest that upregulation of TRPC6 channels in PASMC from IPAH patients serves as an important pathway for agonist-mediated Ca 2+ entry, mitogen-mediated PASMC proliferation and, ultimately, pulmonary vascular remodeling. Targeting TRPC6 expression and function in PASMCs would help develop novel therapeutic approaches for IPAH patients.


2019 ◽  
Vol 316 (1) ◽  
pp. C111-C120 ◽  
Author(s):  
Chuang Li ◽  
Fang Qin ◽  
Mengmeng Xue ◽  
Yucong Lei ◽  
Fen Hu ◽  
...  

Cytosolic free Ca2+ concentration is a key factor in pulmonary vasoconstriction and vascular remodeling of pulmonary artery smooth muscle cells (PASMCs). These processes contribute to pulmonary arterial hypertension and are influenced by expression of calcium-sensing receptor (CaSR). Although regulation of CaSR expression is precisely controlled, the contribution of microRNAs (miR) is incompletely understood. Here, we demonstrate that miR-429, miR-424-5p, miR-200b-3p, and miR-200c-3p regulate CaSR by targeting specific 3′-untranslated region, suggesting that these miRNAs function as CaSR inhibitors in PASMCs. Moreover, miR-429 and miR-424-5p inhibit proliferation of PASMCs by downregulating CaSR, resulting in reduced Ca2+ influx under both normoxia and hypoxia. These findings indicate miR-429 and miR-424-5p target CaSR and may function as Ca2+ influx suppressors in pulmonary arterial hypertension-associated diseases.


Sign in / Sign up

Export Citation Format

Share Document