Thorax
Latest Publications


TOTAL DOCUMENTS

18497
(FIVE YEARS 792)

H-INDEX

203
(FIVE YEARS 14)

Published By Bmj

1468-3296, 0040-6376

Thorax ◽  
2022 ◽  
pp. thoraxjnl-2021-216990
Author(s):  
Virve I Enne ◽  
Alp Aydin ◽  
Rossella Baldan ◽  
Dewi R Owen ◽  
Hollian Richardson ◽  
...  

BackgroundCulture-based microbiological investigation of hospital-acquired or ventilator-associated pneumonia (HAP or VAP) is insensitive, with aetiological agents often unidentified. This can lead to excess antimicrobial treatment of patients with susceptible pathogens, while those with resistant bacteria are treated inadequately for prolonged periods. Using PCR to seek pathogens and their resistance genes directly from clinical samples may improve therapy and stewardship.MethodsSurplus routine lower respiratory tract samples were collected from intensive care unit patients about to receive new or changed antibiotics for hospital-onset lower respiratory tract infections at 15 UK hospitals. Testing was performed using the BioFire FilmArray Pneumonia Panel (bioMérieux) and Unyvero Pneumonia Panel (Curetis). Concordance analysis compared machine and routine microbiology results, while Bayesian latent class (BLC) analysis estimated the sensitivity and specificity of each test, incorporating information from both PCR panels and routine microbiology.FindingsIn 652 eligible samples; PCR identified pathogens in considerably more samples compared with routine microbiology: 60.4% and 74.2% for Unyvero and FilmArray respectively vs 44.2% by routine microbiology. PCR tests also detected more pathogens per sample than routine microbiology. For common HAP/VAP pathogens, FilmArray had sensitivity of 91.7%–100.0% and specificity of 87.5%–99.5%; Unyvero had sensitivity of 50.0%–100.0%%, and specificity of 89.4%–99.0%. BLC analysis indicated that, compared with PCR, routine microbiology had low sensitivity, ranging from 27.0% to 69.4%.InterpretationConventional and BLC analysis demonstrated that both platforms performed similarly and were considerably more sensitive than routine microbiology, detecting potential pathogens in patient samples reported as culture negative. The increased sensitivity of detection realised by PCR offers potential for improved antimicrobial prescribing.


Thorax ◽  
2022 ◽  
pp. thoraxjnl-2020-216807
Author(s):  
Koralia Paschalaki ◽  
Christos Rossios ◽  
Charis Pericleous ◽  
Mairi MacLeod ◽  
Stephen Rothery ◽  
...  

Cellular senescence contributes to the pathophysiology of chronic obstructive pulmonary disease (COPD) and cardiovascular disease. Using endothelial colony-forming-cells (ECFC), we have demonstrated accelerated senescence in smokers and patients with COPD compared with non-smokers. Subgroup analysis suggests that ECFC from patients with COPD on inhaled corticosteroids (ICS) (n=14; eight on ICS) exhibited significantly reduced senescence (Senescence-associated-beta galactosidase activity, p21CIP1), markers of DNA damage response (DDR) and IFN-γ-inducible-protein-10 compared with patients with COPD not on ICS. In vitro studies using human-umbilical-vein-endothelial-cells showed a protective effect of ICS on the DDR, senescence and apoptosis caused by oxidative stress, suggesting a protective molecular mechanism of action of corticosteroids on endothelium.


Thorax ◽  
2022 ◽  
Vol 77 (2) ◽  
pp. 213-214
Author(s):  
Shivani Singh
Keyword(s):  

Thorax ◽  
2022 ◽  
Vol 77 (2) ◽  
pp. 107-107
Author(s):  
The Triumvirate

Thorax ◽  
2022 ◽  
pp. thoraxjnl-2021-217997
Author(s):  
Amy M de Waal ◽  
Pieter S Hiemstra ◽  
Tom HM Ottenhoff ◽  
Simone A Joosten ◽  
Anne M van der Does

The lung epithelium has long been overlooked as a key player in tuberculosis disease. In addition to acting as a direct barrier to Mycobacterium tuberculosis (Mtb), epithelial cells (EC) of the airways and alveoli act as first responders during Mtb infections; they directly sense and respond to Mtb by producing mediators such as cytokines, chemokines and antimicrobials. Interactions of EC with innate and adaptive immune cells further shape the immune response against Mtb. These three essential components, epithelium, immune cells and Mtb, are rarely studied in conjunction, owing in part to difficulties in coculturing them. Recent advances in cell culture technologies offer the opportunity to model the lung microenvironment more closely. Herein, we discuss the interplay between lung EC, immune cells and Mtb and argue that modelling these interactions is of key importance to unravel early events during Mtb infection.


Thorax ◽  
2022 ◽  
pp. thoraxjnl-2021-217576
Author(s):  
Mette Kolpen ◽  
Kasper Nørskov Kragh ◽  
Juan Barraza Enciso ◽  
Daniel Faurholt-Jepsen ◽  
Birgitte Lindegaard ◽  
...  

BackgroundA basic paradigm of human infection is that acute bacterial disease is caused by fast growing planktonic bacteria while chronic infections are caused by slow-growing, aggregated bacteria, a phenomenon known as a biofilm. For lung infections, this paradigm has been thought to be supported by observations of how bacteria proliferate in well-established growth media in the laboratory—the gold standard of microbiology.ObjectiveTo investigate the bacterial architecture in sputum from patients with acute and chronic lung infections.MethodsAdvanced imaging technology was used for quantification and direct comparison of infection types on fresh sputum samples, thereby directly testing the acute versus chronic paradigm.ResultsIn this study, we compared the bacterial lifestyle (planktonic or biofilm), growth rate and inflammatory response of bacteria in freshly collected sputum (n=43) from patient groups presenting with acute or chronic lung infections. We found that both acute and chronic lung infections are dominated by biofilms (aggregates of bacteria within an extracellular matrix), although planktonic cells were observed in both sample types. Bacteria grew faster in sputum from acute infections, but these fast-growing bacteria were enriched in biofilms similar to the architecture thought to be reserved for chronic infections. Cellular inflammation in the lungs was also similar across patient groups, but systemic inflammatory markers were only elevated in acute infections.ConclusionsOur findings indicate that the current paradigm of equating planktonic with acute and biofilm with chronic infection needs to be revisited as the difference lies primarily in metabolic rates, not bacterial architecture.


Thorax ◽  
2022 ◽  
pp. thoraxjnl-2021-218168
Author(s):  
Ana Lucia Fuentes ◽  
Laura E Crotty Alexander
Keyword(s):  

Thorax ◽  
2022 ◽  
pp. thoraxjnl-2021-217041
Author(s):  
Talat Islam ◽  
Jessica Braymiller ◽  
Sandrah P Eckel ◽  
Feifei Liu ◽  
Alayna P Tackett ◽  
...  

RationaleDespite high prevalence of e-cigarette use (vaping), little is currently known regarding the health effects of secondhand nicotine vape exposure.ObjectiveTo investigate whether exposure to secondhand nicotine vape exposure is associated with adverse respiratory health symptoms among young adults.MethodWe investigated the effect of secondhand nicotine vape exposure on annually reported wheeze, bronchitic symptoms and shortness of breath in the prospective Southern California Children Health Study cohort. Data were collected from study participants (n=2097) with repeated annual surveys from 2014 (average age: 17.3 years) to 2019 (average age: 21.9). We used mixed effect logistic regression to evaluate the association between secondhand nicotine vape and respiratory symptoms after controlling for relevant confounders.ResultsPrevalence of secondhand nicotine vape increased from 11.7% to 15.6% during the study period in this population. Prevalence of wheeze, bronchitic symptoms and shortness of breath ranged from 12.3% to 14.9%, 19.4% to 26.0% and 16.5% to 18.1%, respectively, during the study period. Associations of secondhand nicotine vape exposure with bronchitic symptoms (OR 1.40, 95% CI 1.06 to 1.84) and shortness of breath (OR 1.53, 95% CI 1.06 to 2.21) were observed after controlling for vaping, active and passive exposure to tobacco or cannabis, and demographic characteristics (age, gender, race/ethnicity and parental education). Stronger associations were observed when analysis was restricted to participants who were neither smokers nor vapers. There were no associations with wheezing after adjustment for confounders.ConclusionSecondhand nicotine vape exposure was associated with increased risk of bronchitic symptoms and shortness of breath among young adults.


Thorax ◽  
2022 ◽  
pp. thoraxjnl-2021-218279
Author(s):  
Andrea R Levine ◽  
Carl Shanholtz

Thorax ◽  
2022 ◽  
pp. thoraxjnl-2021-218296
Author(s):  
Rebecca F D'Cruz ◽  
Georgios Kaltsakas

Sign in / Sign up

Export Citation Format

Share Document