scholarly journals miRA: adaptable novel miRNA identification in plants using small RNA sequencing data

2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Maurits Evers ◽  
Michael Huttner ◽  
Anne Dueck ◽  
Gunter Meister ◽  
Julia C. Engelmann
3 Biotech ◽  
2020 ◽  
Vol 10 (2) ◽  
Author(s):  
Chaowu Yang ◽  
Xia Xiong ◽  
Xiaosong Jiang ◽  
Huarui Du ◽  
Qingyun Li ◽  
...  

Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 964
Author(s):  
Sarka Benesova ◽  
Mikael Kubista ◽  
Lukas Valihrach

MicroRNAs (miRNAs) are a class of small RNA molecules that have an important regulatory role in multiple physiological and pathological processes. Their disease-specific profiles and presence in biofluids are properties that enable miRNAs to be employed as non-invasive biomarkers. In the past decades, several methods have been developed for miRNA analysis, including small RNA sequencing (RNA-seq). Small RNA-seq enables genome-wide profiling and analysis of known, as well as novel, miRNA variants. Moreover, its high sensitivity allows for profiling of low input samples such as liquid biopsies, which have now found applications in diagnostics and prognostics. Still, due to technical bias and the limited ability to capture the true miRNA representation, its potential remains unfulfilled. The introduction of many new small RNA-seq approaches that tried to minimize this bias, has led to the existence of the many small RNA-seq protocols seen today. Here, we review all current approaches to cDNA library construction used during the small RNA-seq workflow, with particular focus on their implementation in commercially available protocols. We provide an overview of each protocol and discuss their applicability. We also review recent benchmarking studies comparing each protocol’s performance and summarize the major conclusions that can be gathered from their usage. The result documents variable performance of the protocols and highlights their different applications in miRNA research. Taken together, our review provides a comprehensive overview of all the current small RNA-seq approaches, summarizes their strengths and weaknesses, and provides guidelines for their applications in miRNA research.


2020 ◽  
Vol 522 (3) ◽  
pp. 776-782
Author(s):  
Wei-Hao Lee ◽  
Kai-Pu Chen ◽  
Kai Wang ◽  
Hsuan-Cheng Huang ◽  
Hsueh-Fen Juan

2016 ◽  
Vol 13 (5) ◽  
Author(s):  
Matthew Kanke ◽  
Jeanette Baran-Gale ◽  
Jonathan Villanueva ◽  
Praveen Sethupathy

SummarySmall non-coding RNAs, in particular microRNAs, are critical for normal physiology and are candidate biomarkers, regulators, and therapeutic targets for a wide variety of diseases. There is an ever-growing interest in the comprehensive and accurate annotation of microRNAs across diverse cell types, conditions, species, and disease states. Highthroughput sequencing technology has emerged as the method of choice for profiling microRNAs. Specialized bioinformatic strategies are required to mine as much meaningful information as possible from the sequencing data to provide a comprehensive view of the microRNA landscape. Here we present miRquant 2.0, an expanded bioinformatics tool for accurate annotation and quantification of microRNAs and their isoforms (termed isomiRs) from small RNA-sequencing data. We anticipate that miRquant 2.0 will be useful for researchers interested not only in quantifying known microRNAs but also mining the rich well of additional information embedded in small RNA-sequencing data.


2009 ◽  
Vol 25 (18) ◽  
pp. 2298-2301 ◽  
Author(s):  
D. Langenberger ◽  
C. Bermudez-Santana ◽  
J. Hertel ◽  
S. Hoffmann ◽  
P. Khaitovich ◽  
...  

Genomics Data ◽  
2016 ◽  
Vol 7 ◽  
pp. 46-53 ◽  
Author(s):  
Suyash Agarwal ◽  
Naresh Sahebrao Nagpure ◽  
Prachi Srivastava ◽  
Basdeo Kushwaha ◽  
Ravindra Kumar ◽  
...  

2011 ◽  
Vol 392 (4) ◽  
Author(s):  
Sven Findeiß ◽  
David Langenberger ◽  
Peter F. Stadler ◽  
Steve Hoffmann

Abstract Many aspects of the RNA maturation leave traces in RNA sequencing data in the form of deviations from the reference genomic DNA. This includes, in particular, genomically non-encoded nucleotides and chemical modifications. The latter leave their signatures in the form of mismatches and conspicuous patterns of sequencing reads. Modified mapping procedures focusing on particular types of deviations can help to unravel post-transcriptional modification, maturation and degradation processes. Here, we focus on small RNA sequencing data that is produced in large quantities aimed at the analysis of microRNA expression. Starting from the recovery of many well known modified sites in tRNAs, we provide evidence that modified nucleotides are a pervasive phenomenon in these data sets. Regarding non-encoded nucleotides we concentrate on CCA tails, which surprisingly can be found in a diverse collection of transcripts including sub-populations of mature microRNAs. Although small RNA sequencing libraries alone are insufficient to obtain a complete picture, they can inform on many aspects of the complex processes of RNA maturation.


Sign in / Sign up

Export Citation Format

Share Document