scholarly journals Bioinformatics identification of new targets for improving low temperature stress tolerance in spring and winter wheat

2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Alain B. Tchagang ◽  
François Fauteux ◽  
Dan Tulpan ◽  
Youlian Pan
2018 ◽  
Vol 39 (4) ◽  
pp. 529-535 ◽  
Author(s):  
Y.K. Meena ◽  
◽  
D.S. Khurana ◽  
Nirmaljit Kaur ◽  
Kulbir Singh ◽  
...  

1988 ◽  
Vol 66 (8) ◽  
pp. 1610-1615 ◽  
Author(s):  
D. A. Gaudet ◽  
T. H. H. Chen

The relationship between snow mold resistance and freezing resistance was studied under controlled-environment conditions, using winter wheat (Triticum aestivum L. em. Thell) cultivars varying in freezing resistance and resistance to cottony snow mold (Coprinus psychromorbidus Redhead & Traquair). Cultivars varying in freezing resistance were equally susceptible to C. psychromorbidus. There existed a negative relationship between snow mold resistance and freezing resistance. Sublethal, subzero freezing temperatures between −3 and −12 °C predisposed the winter wheat cultivar 'Winalta' to increased damage by C. psychromorbidus. A synergistic effect resulting in increased mortality was observed when winter wheat plants received a combination of low-temperature stress and inoculation with C. psychromorbidus. In hardened winter wheat plants, sublethal levels of snow mold damage following 6 weeks incubation with C. psychromorbidus resulted in a reduction in freezing resistance or LT50 (50% killing temperature) of approximately 7 °C compared with the noninoculated controls. The possible role of low-temperature stress on the susceptibility of winter wheats to C. psychromorbidus and of snow mold infection on the retention of freezing resistance in winter wheats during winter in the central and northern Canadian prairies is discussed.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 426
Author(s):  
Tao Luo ◽  
Yuting Zhang ◽  
Chunni Zhang ◽  
Matthew N. Nelson ◽  
Jinzhan Yuan ◽  
...  

Low temperature inhibits rapid germination and successful seedling establishment of rapeseed (Brassica napus L.), leading to significant productivity losses. Little is known about the genetic diversity for seed vigor under low-temperature conditions in rapeseed, which motivated our investigation of 13 seed germination- and emergence-related traits under normal and low-temperature conditions for 442 diverse rapeseed accessions. The stress tolerance index was calculated for each trait based on performance under non-stress and low-temperature stress conditions. Principal component analysis of the low-temperature stress tolerance indices identified five principal components that captured 100% of the seedling response to low temperature. A genome-wide association study using ~8 million SNP (single-nucleotide polymorphism) markers identified from genome resequencing was undertaken to uncover the genetic basis of seed vigor related traits in rapeseed. We detected 22 quantitative trait loci (QTLs) significantly associated with stress tolerance indices regarding seed vigor under low-temperature stress. Scrutiny of the genes in these QTL regions identified 62 candidate genes related to specific stress tolerance indices of seed vigor, and the majority were involved in DNA repair, RNA translation, mitochondrial activation and energy generation, ubiquitination and degradation of protein reserve, antioxidant system, and plant hormone and signal transduction. The high effect variation and haplotype-based effect of these candidate genes were evaluated, and high priority could be given to the candidate genes BnaA03g40290D, BnaA06g07530D, BnaA09g06240D, BnaA09g06250D, and BnaC02g10720D in further study. These findings should be useful for marker-assisted breeding and genomic selection of rapeseed to increase seed vigor under low-temperature stress.


2020 ◽  
Vol 107 (4) ◽  
pp. 329-336
Author(s):  
Andrius Aleliūnas ◽  
Kristina Jaškūnė ◽  
Gražina Statkevičiūtė ◽  
Gabija Vaitkevičiūtė ◽  
Gintaras Brazauskas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document