scholarly journals Non-parametric synergy modeling of chemical compounds with Gaussian processes

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Yuliya Shapovalova ◽  
Tom Heskes ◽  
Tjeerd Dijkstra

Abstract Background Understanding the synergetic and antagonistic effects of combinations of drugs and toxins is vital for many applications, including treatment of multifactorial diseases and ecotoxicological monitoring. Synergy is usually assessed by comparing the response of drug combinations to a predicted non-interactive response from reference (null) models. Possible choices of null models are Loewe additivity, Bliss independence and the recently rediscovered Hand model. A different approach is taken by the MuSyC model, which directly fits a generalization of the Hill model to the data. All of these models, however, fit the dose–response relationship with a parametric model. Results We propose the Hand-GP model, a non-parametric model based on the combination of the Hand model with Gaussian processes. We introduce a new logarithmic squared exponential kernel for the Gaussian process which captures the logarithmic dependence of response on dose. From the monotherapeutic response and the Hand principle, we construct a null reference response and synergy is assessed from the difference between this null reference and the Gaussian process fitted response. Statistical significance of the difference is assessed from the confidence intervals of the Gaussian process fits. We evaluate performance of our model on a simulated data set from Greco, two simulated data sets of our own design and two benchmark data sets from Chou and Talalay. We compare the Hand-GP model to standard synergy models and show that our model performs better on these data sets. We also compare our model to the MuSyC model as an example of a recent method on these five data sets and on two-drug combination screens: Mott et al. anti-malarial screen and O’Neil et al. anti-cancer screen. We identify cases in which the HandGP model is preferred and cases in which the MuSyC model is preferred. Conclusion The Hand-GP model is a flexible model to capture synergy. Its non-parametric and probabilistic nature allows it to model a wide variety of response patterns.

2021 ◽  
Author(s):  
Yuliya Shapovalova ◽  
Tom Heskes ◽  
Tjeerd M.H. Dijkstra

Background: Understanding the synergetic and antagonistic effects of combinations of drugs and toxins is vital for many applications, including treatment of multifactorial diseases and ecotoxicological monitoring. Synergy is usually assessed by comparing the response of drug combinations to a predicted non-interactive response from reference (null) models. Possible choices of null models are Loewe additivity, Bliss independence and the recently rediscovered Hand model. A different approach is taken by the MuSyC model, which directly fits a generalization of the Hill model to the data. All of these models, however, fit the dose-response relationship with a parametric model. Results: We propose the Hand-GP model, a non-parametric model based on the combination of the Hand model with Gaussian processes. We introduce a new logarithmic squared exponential kernel for the Gaussian process which captures the logarithmic dependence of response on dose. From the monotherapeutic response and the Hand principle, we construct a null reference response and synergy is assessed from the difference between this null reference and the Gaussian process fitted response. We evaluated performance of our model on a simulated data from Greco, two simulated data sets of our own design and two benchmark data sets from Chou and Talalay. We compare the Hand-GP model to standard synergy models and show that our model performs better than these standards. We also compare our model to the MuSyC model as example of a recent method which also fits a complete dose-response surface. Also in this case, the Hand-GP model performs better. Conclusion: The Hand-GP model is a flexible model to capture synergy. Its non-parametric natures allows it to model a wide variety of response patterns.


Author(s):  
Nico Borgsmüller ◽  
Jose Bonet ◽  
Francesco Marass ◽  
Abel Gonzalez-Perez ◽  
Nuria Lopez-Bigas ◽  
...  

AbstractThe high resolution of single-cell DNA sequencing (scDNA-seq) offers great potential to resolve intra-tumor heterogeneity by distinguishing clonal populations based on their mutation profiles. However, the increasing size of scDNA-seq data sets and technical limitations, such as high error rates and a large proportion of missing values, complicate this task and limit the applicability of existing methods. Here we introduce BnpC, a novel non-parametric method to cluster individual cells into clones and infer their genotypes based on their noisy mutation profiles. BnpC employs a Dirichlet process mixture model coupled with a Markov chain Monte Carlo sampling scheme, including a modified split-merge move and a novel posterior estimator to predict clones and genotypes. We benchmarked our method comprehensively against state-of-the-art methods on simulated data using various data sizes, and applied it to three cancer scDNA-seq data sets. On simulated data, BnpC compared favorably against current methods in terms of accuracy, runtime, and scalability. Its inferred genotypes were the most accurate, and it was the only method able to run and produce results on data sets with 10,000 cells. On tumor scDNA-seq data, BnpC was able to identify clonal populations missed by the original cluster analysis but supported by supplementary experimental data. With ever growing scDNA-seq data sets, scalable and accurate methods such as BnpC will become increasingly relevant, not only to resolve intra-tumor heterogeneity but also as a pre-processing step to reduce data size. BnpC is freely available under MIT license at https://github.com/cbg-ethz/BnpC.


2016 ◽  
Author(s):  
Eric Schulz ◽  
Maarten Speekenbrink ◽  
Andreas Krause

AbstractThis tutorial introduces the reader to Gaussian process regression as an expressive tool to model, actively explore and exploit unknown functions. Gaussian process regression is a powerful, non-parametric Bayesian approach towards regression problems that can be utilized in exploration and exploitation scenarios. This tutorial aims to provide an accessible introduction to these techniques. We will introduce Gaussian processes which generate distributions over functions used for Bayesian non-parametric regression, and demonstrate their use in applications and didactic examples including simple regression problems, a demonstration of kernel-encoded prior assumptions and compositions, a pure exploration scenario within an optimal design framework, and a bandit-like exploration-exploitation scenario where the goal is to recommend movies. Beyond that, we describe a situation modelling risk-averse exploration in which an additional constraint (not to sample below a certain threshold) needs to be accounted for. Lastly, we summarize recent psychological experiments utilizing Gaussian processes. Software and literature pointers are also provided.


Author(s):  
Suman Debnath ◽  
Anirban Banik ◽  
Tarun Kanti Bandyopadhyay ◽  
Mrinmoy Majumder ◽  
Apu Kumar Saha

1983 ◽  
Vol 20 (03) ◽  
pp. 529-536
Author(s):  
W. J. R. Eplett

A natural requirement to impose upon the life distribution of a component is that after inspection at some randomly chosen time to check whether it is still functioning, its life distribution from the time of checking should be bounded below by some specified distribution which may be defined by external considerations. Furthermore, the life distribution should ideally be minimal in the partial ordering obtained from the conditional probabilities. We prove that these specifications provide an apparently new characterization of the DFRA class of life distributions with a corresponding result for IFRA distributions. These results may be transferred, using Slepian's lemma, to obtain bounds for the boundary crossing probabilities of a stationary Gaussian process.


2019 ◽  
Vol 45 (9) ◽  
pp. 1183-1198
Author(s):  
Gaurav S. Chauhan ◽  
Pradip Banerjee

Purpose Recent papers on target capital structure show that debt ratio seems to vary widely in space and time, implying that the functional specifications of target debt ratios are of little empirical use. Further, target behavior cannot be adjudged correctly using debt ratios, as they could revert due to mechanical reasons. The purpose of this paper is to develop an alternative testing strategy to test the target capital structure. Design/methodology/approach The authors make use of a major “shock” to the debt ratios as an event and think of a subsequent reversion as a movement toward a mean or target debt ratio. By doing this, the authors no longer need to identify target debt ratios as a function of firm-specific variables or any other rigid functional form. Findings Similar to the broad empirical evidence in developed economies, there is no perceptible and systematic mean reversion by Indian firms. However, unlike developed countries, proportionate usage of debt to finance firms’ marginal financing deficits is extensive; equity is used rather sparingly. Research limitations/implications The trade-off theory could be convincingly refuted at least for the emerging market of India. The paper here stimulated further research on finding reasons for specific financing behavior of emerging market firms. Practical implications The results show that the firms’ financing choices are not only depending on their own firm’s specific variables but also on the financial markets in which they operate. Originality/value This study attempts to assess mean reversion in debt ratios in a unique but reassuring manner. The results are confirmed by extensive calibration of the testing strategy using simulated data sets.


2021 ◽  
pp. 1-14
Author(s):  
Ana López-Cheda ◽  
María-Amalia Jácome ◽  
Ricardo Cao ◽  
Pablo M. De Salazar

Sign in / Sign up

Export Citation Format

Share Document