scholarly journals Complete mitochondrial genomes of Nanorana taihangnica and N. yunnanensis (Anura: Dicroglossidae) with novel gene arrangements and phylogenetic relationship of Dicroglossidae

2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Jia-Yong Zhang ◽  
Le-Ping Zhang ◽  
Dan-Na Yu ◽  
Kenneth B. Storey ◽  
Rong-Quan Zheng
Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 779 ◽  
Author(s):  
Ke-Ke Xu ◽  
Qing-Ping Chen ◽  
Sam Pedro Galilee Ayivi ◽  
Jia-Yin Guan ◽  
Kenneth B. Storey ◽  
...  

Insects of the order Phasmatodea are mainly distributed in the tropics and subtropics and are best known for their remarkable camouflage as plants. In this study, we sequenced three complete mitochondrial genomes from three different families: Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis. The lengths of the three mitochondrial genomes were 15,896 bp, 16,869 bp, and 17,005 bp, respectively, and the gene composition and structure of the three stick insects were identical to those of the most recent common ancestor of insects. The phylogenetic relationships among stick insects have been chaotic for a long time. In order to discuss the intra- and inter-ordinal relationship of Phasmatodea, we used the 13 protein-coding genes (PCGs) of 85 species for maximum likelihood (ML) and Bayesian inference (BI) analyses. Results showed that the internal topological structure of Phasmatodea had a few differences in both ML and BI trees and long-branch attraction (LBA) appeared between Embioptera and Zoraptera, which led to a non-monophyletic Phasmatodea. Consequently, after removal of the Embioptera and Zoraptera species, we re-performed ML and BI analyses with the remaining 81 species, which showed identical topology except for the position of Tectarchus ovobessus (Phasmatodea). We recovered the monophyly of Phasmatodea and the sister-group relationship between Phasmatodea and Mantophasmatodea. Our analyses also recovered the monophyly of Heteropterygidae and the paraphyly of Diapheromeridae, Phasmatidae, Lonchodidae, Lonchodinae, and Clitumninae. In this study, Peruphasma schultei (Pseudophasmatidae), Phraortes sp. YW-2014 (Lonchodidae), and species of Diapheromeridae clustered into the clade of Phasmatidae. Within Heteropterygidae, O. guangxiensis was the sister clade to O. mouhotii belonging to Dataminae, and the relationship of (Heteropteryginae + (Dataminae + Obriminae)) was recovered.


2010 ◽  
Vol 85 (3) ◽  
pp. 219-232 ◽  
Author(s):  
Mohammad Shafiqul Alam ◽  
Atsushi Kurabayashi ◽  
Yoko Hayashi ◽  
Naomi Sano ◽  
Md. Mukhlesur Rahman Khan ◽  
...  

ZooKeys ◽  
2020 ◽  
Vol 969 ◽  
pp. 23-42
Author(s):  
Qiu Zhongying ◽  
Chang Huihui ◽  
Yuan Hao ◽  
Huang Yuan ◽  
Lu Huimeng ◽  
...  

In this study, the whole mitochondrial genomes (mitogenomes) from four species were sequenced. The complete mitochondrial genomes of Sinopodisma pieli, S. houshana, S. qinlingensis, and S. wulingshanensis are 15,857 bp, 15,818 bp, 15,843 bp, and 15,872 bp in size, respectively. The 13 protein-coding genes (PCGs) begin with typical ATN codons, except for COXI in S. qinlingensis, which begins with ACC. The highest A+T content in all the sequenced orthopteran mitogenomes is 76.8% (S. qinlingensis), followed by 76.5% (S. wulingshanensis), 76.4% (S. pieli) and 76.4% (S. houshana) (measured on the major strand). The long polythymine stretches (T-stretch) in the A+T-rich region of the four species are not adjacent to the trnI locus but are inside the stem-loop sequences on the major strand. Moreover, several repeated elements are found in the A+T-rich region of the four species. Phylogenetic analysis based on 53 mitochondrial genomes using Bayesian Inference (BI) and Maximum Likelihood (ML) revealed that Melanoplinae (Podismini) was a monophyletic group; however, the monophyly of Sinopodisma was not supported. These data will provide important information for a better understanding of the phylogenetic relationship of Melanoplinae.


Zootaxa ◽  
2021 ◽  
Vol 5027 (1) ◽  
pp. 127-135
Author(s):  
XUEJUAN LI ◽  
YUXIN LIU ◽  
LILIANG LIN

The genera Teredorus and Systolederus belong to Tetriginae and Metrodorinae respectively. However, species within these two genera have strikingly similar features, made it difficult to identify clearly by morphological characteristics. In this study, we sequenced the mitochondrial genomes (mitogenomes) of two Teredorus species, and compared them with Systolederus mitochondrial sequences. The sequenced mitogenomes of T. hainanensis and T. bashanensis are 14,946 bp and 14,775 bp in size, respectively. The A+T content of mitogenomes is 76.2% (T. hainanensis) and 74.0% (T. bashanensis). Comparative analysis showed that mitochondrial sequences and structure were similar within these two genera. The results of K2P distances and phylogenetic analysis revealed that Systolederus and Teredorus might be likely considered as one genus of Teredorus. It will provide important resources for further understanding of the taxonomy and phylogenetic relationship of Systolederus and Teredorus.  


Sign in / Sign up

Export Citation Format

Share Document