scholarly journals Chromosomal evolution and phylogeny in the Nullicauda group (Chiroptera, Phyllostomidae): evidence from multidirectional chromosome painting

2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Anderson José Baia Gomes ◽  
Cleusa Yoshiko Nagamachi ◽  
Luis Reginaldo Ribeiro Rodrigues ◽  
Malcolm Andrew Ferguson-Smith ◽  
Fengtang Yang ◽  
...  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Melquizedec Luiz Silva Pinheiro ◽  
Cleusa Yoshiko Nagamachi ◽  
Talita Fernanda Augusto Ribas ◽  
Cristovam Guerreiro Diniz ◽  
Patricia Caroline Mary O´Brien ◽  
...  

Abstract Background The Scolopacidae family (Suborder Scolopaci, Charadriiformes) is composed of sandpipers and snipes; these birds are long-distance migrants that show great diversity in their behavior and habitat use. Cytogenetic studies in the Scolopacidae family show the highest diploid numbers for order Charadriiformes. This work analyzes for the first time the karyotype of Actitis macularius by classic cytogenetics and chromosome painting. Results The species has a diploid number of 92, composed mostly of telocentric pairs. This high 2n is greater than the proposed 80 for the avian ancestral putative karyotype (a common feature among Scolopaci), suggesting that fission rearrangements have formed smaller macrochromosomes and microchromosomes. Fluorescence in situ hybridization using Burhinus oedicnemus whole chromosome probes confirmed the fissions in pairs 1, 2, 3, 4 and 6 of macrochromosomes. Conclusion Comparative analysis with other species of Charadriiformes studied by chromosome painting together with the molecular phylogenies for the order allowed us to raise hypotheses about the chromosomal evolution in suborder Scolopaci. From this, we can establish a clear idea of how chromosomal evolution occurred in this suborder.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Willam Oliveira da Silva ◽  
Julio Cesar Pieczarka ◽  
Marlyson Jeremias Rodrigues da Costa ◽  
Malcolm Andrew Ferguson-Smith ◽  
Patricia Caroline Mary O’Brien ◽  
...  

Abstract Background The Neacomys genus is predominantly found in the Amazon region, and belongs to the most diverse tribe of the Sigmodontinae subfamily (Rodentia, Cricetidae, Oryzomyini). The systematics of this genus and questions about its diversity and range have been investigated by morphological, molecular (Cytb and COI sequences) and karyotype analysis (classic cytogenetics and chromosome painting), which have revealed candidate species and new distribution areas. Here we analyzed four species of Neacomys by chromosome painting with Hylaeamys megacephalus (HME) whole-chromosome probes, and compared the results with two previously studied Neacomys species and with other taxa from Oryzomyini and Akodontini tribes that have been hybridized with HME probes. Maximum Parsimony (MP) analyses were performed with the PAUP and T.N.T. software packages, using a non-additive (unordered) multi-state character matrix, based on chromosomal morphology, number and syntenic blocks. We also compared the chromosomal phylogeny obtained in this study with molecular topologies (Cytb and COI) that included eastern Amazonian species of Neacomys, to define the phylogenetic relationships of these taxa. Results The comparative chromosome painting analysis of the seven karyotypes of the six species of Neacomys shows that their diversity is due to 17 fusion/fission events and one translocation, pericentric inversions in four syntenic blocks, and constitutive heterochromatin (CH) amplification/deletion of six syntenic autosomal blocks plus the X chromosome. The chromosomal phylogeny is consistent with the molecular relationships of species of Neacomys. We describe new karyotypes and expand the distribution area for species from eastern Amazonia and detect complex rearrangements by chromosome painting among the karyotypes. Conclusions Our phylogeny reflects the molecular relationships of the Akodontini and Oryzomyini taxa and supports the monophyly of Neacomys. This work presents new insights about the chromosomal evolution of this group, and we conclude that the karyotypic divergence is in accord with phylogenetic relationships.


2007 ◽  
Vol 274 (1615) ◽  
pp. 1333-1340 ◽  
Author(s):  
A.T Pardini ◽  
P.C.M O'Brien ◽  
B Fu ◽  
R.K Bonde ◽  
F.F.B Elder ◽  
...  

Despite marked improvements in the interpretation of systematic relationships within Eutheria, particular nodes, including Paenungulata (Hyracoidea, Sirenia and Proboscidea), remain ambiguous. The combination of a rapid radiation, a deep divergence and an extensive morphological diversification has resulted in a limited phylogenetic signal confounding resolution within this clade both at the morphological and nucleotide levels. Cross-species chromosome painting was used to delineate regions of homology between Loxodonta africana (2 n =56), Procavia capensis (2 n =54), Trichechus manatus latirostris (2 n =48) and an outgroup taxon, the aardvark ( Orycteropus afer , 2 n =20). Changes specific to each lineage were identified and although the presence of a minimum of 11 synapomorphies confirmed the monophyly of Paenungulata, no change characterizing intrapaenungulate relationships was evident. The reconstruction of an ancestral paenungulate karyotype and the estimation of rates of chromosomal evolution indicate a reduced rate of genomic repatterning following the paenungulate radiation. In comparison to data available for other mammalian taxa, the paenungulate rate of chromosomal evolution is slow to moderate. As a consequence, the absence of a chromosomal character uniting two paenungulates (at the level of resolution characterized in this study) may be due to a reduced rate of chromosomal change relative to the length of time separating successive divergence events.


2011 ◽  
Vol 19 (7) ◽  
pp. 843-855 ◽  
Author(s):  
Vladimir A. Trifonov ◽  
Massimo Giovannotti ◽  
Patricia C. M. O’Brien ◽  
Margaret Wallduck ◽  
Frances Lovell ◽  
...  

2020 ◽  
Author(s):  
Melquizedec Luiz Silva Pinheiro ◽  
Cleusa Yoshiko Nagamachi ◽  
Talita Fernanda Augusto Ribas ◽  
Cristovam Guerreiro Diniz ◽  
Patricia Caroline Mary O´Brien ◽  
...  

Abstract Background: The Scolopacidae family (Suborder Scolopaci, Charadriiformes) is composed of sandpipers and snipes; these birds are long-distance migrants that show great diversity in their behavior and habitat use. Cytogenetic studies in the Scolopacidae family show the highest diploid numbers for order Charadriiformes. This work analyzes for the first time the karyotype of Actitis macularius by classic cytogenetics and chromosome painting. Results: The species has a diploid number of 92, composed mostly of telocentric pairs. This high 2n is greater than the proposed 80 for the avian ancestral putative karyotype, suggesting that fission rearrangements have formed smaller macrochromosomes and microchromosomes. Fluorescence In Situ Hybridization using Burhinus oedicnemus whole chromosome probes confirmed these fissions in all pairs of macrochromosomes. Conclusion: Comparative analysis with other species of Charadriiformes studied by chromosome painting together with the molecular phylogenies for the order allowed us to raise hypotheses about the chromosomal evolution in suborder Scolopaci. From this, we can establish a clear idea of ​​how chromosomal evolution occurred in this suborder.


2006 ◽  
Vol 14 (8) ◽  
pp. 793-803 ◽  
Author(s):  
C. Gilbert ◽  
P. C. O’Brien ◽  
G. Bronner ◽  
F. Yang ◽  
A. Hassanin ◽  
...  

2008 ◽  
Vol 122 (2) ◽  
pp. 157-162 ◽  
Author(s):  
E.H.C. de Oliveira ◽  
S.P. de Moura ◽  
L.J.S. dos Anjos ◽  
C.Y. Nagamachi ◽  
J.C. Pieczarka ◽  
...  

2007 ◽  
Vol 15 (4) ◽  
pp. 447-456 ◽  
Author(s):  
Natalia A. Sitnikova ◽  
Svetlana A. Romanenko ◽  
Patricia C. M. O’Brien ◽  
Polina L. Perelman ◽  
Beiyuan Fu ◽  
...  

2013 ◽  
Vol 13 (1) ◽  
pp. 276 ◽  
Author(s):  
Cibele G Sotero-Caio ◽  
Marianne Volleth ◽  
Lauren S Gollahon ◽  
Beiyuan Fu ◽  
William Cheng ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258474
Author(s):  
Vergiana dos Santos Paixão ◽  
Pablo Suárez ◽  
Willam Oliveira da Silva ◽  
Lena Geise ◽  
Malcolm Andrew Ferguson-Smith ◽  
...  

Rhipidomys (Sigmodontinae, Thomasomyini) has 25 recognized species, with a wide distribution ranging from eastern Panama to northern Argentina. Cytogenetic data has been described for 13 species with 12 of them having 2n = 44 with a high level of autosomal fundamental number (FN) variation, ranging from 46 to 80, assigned to pericentric inversions. The species are grouped in groups with low FN (46–52) and high FN (72–80). In this work the karyotypes of Rhipidomys emiliae (2n = 44, FN = 50) and Rhipidomys mastacalis (2n = 44, FN = 74), were studied by classical cytogenetics and by fluorescence in situ hybridization using telomeric and whole chromosome probes (chromosome painting) of Hylaeamys megacephalus (HME). Chromosome painting revealed homology between 36 segments of REM and 37 of RMA. We tested the hypothesis that pericentric inversions are the predominant chromosomal rearrangements responsible for karyotypic divergence between these species, as proposed in literature. Our results show that the genomic diversification between the karyotypes of the two species resulted from translocations, centromeric repositioning and pericentric inversions. The chromosomal evolution in Rhipidomys was associated with karyotypical orthoselection. The HME probes revealed that seven syntenic probably ancestral blocks for Sigmodontinae are present in Rhipidomys. An additional syntenic block described here is suggested as part of the subfamily ancestral karyotype. We also define five synapomorphies that can be used as chromosomal signatures for Rhipidomys.


Sign in / Sign up

Export Citation Format

Share Document