syntenic relationship
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 0)

Author(s):  
Anne-Laure Ferchaud ◽  
Claire Mérot ◽  
Eric Normandeau ◽  
Jiannis Ragoussis ◽  
Charles Babin ◽  
...  

Abstract Despite the commercial importance of Greenland Halibut (Reinhardtius hippoglossoides), important gaps still persist in our knowledge of this species, including its reproductive biology and sex determination mechanism. Here, we combined single-molecule sequencing of long reads (Pacific Sciences) with chromatin conformation capture sequencing (Hi-C) data to assemble the first chromosome-level reference genome for this species. The high-quality assembly encompassed more than 598 Megabases (Mb) assigned to 1 594 scaffolds (scaffold N50 = 25 Mb) with 96% of its total length distributed among 24 chromosomes. Investigation of the syntenic relationship with other economically important flatfish species revealed a high conservation of synteny blocks among members of this phylogenetic clade. Sex determination analysis revealed that, similar to other teleost fishes, flatfishes also exhibit a high level of plasticity and turnover in sex-determination mechanisms. A low-coverage whole-genome sequence analysis of 198 individuals revealed that Greenland Halibut possesses a male heterogametic XY system and several putative candidate genes implied in the sex determination of this species. Our study also suggests for the first time in flatfishes that a putative Y-autosomal fusion could be associated with a reduction of recombination typical of the early steps of sex chromosome evolution.



PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258474
Author(s):  
Vergiana dos Santos Paixão ◽  
Pablo Suárez ◽  
Willam Oliveira da Silva ◽  
Lena Geise ◽  
Malcolm Andrew Ferguson-Smith ◽  
...  

Rhipidomys (Sigmodontinae, Thomasomyini) has 25 recognized species, with a wide distribution ranging from eastern Panama to northern Argentina. Cytogenetic data has been described for 13 species with 12 of them having 2n = 44 with a high level of autosomal fundamental number (FN) variation, ranging from 46 to 80, assigned to pericentric inversions. The species are grouped in groups with low FN (46–52) and high FN (72–80). In this work the karyotypes of Rhipidomys emiliae (2n = 44, FN = 50) and Rhipidomys mastacalis (2n = 44, FN = 74), were studied by classical cytogenetics and by fluorescence in situ hybridization using telomeric and whole chromosome probes (chromosome painting) of Hylaeamys megacephalus (HME). Chromosome painting revealed homology between 36 segments of REM and 37 of RMA. We tested the hypothesis that pericentric inversions are the predominant chromosomal rearrangements responsible for karyotypic divergence between these species, as proposed in literature. Our results show that the genomic diversification between the karyotypes of the two species resulted from translocations, centromeric repositioning and pericentric inversions. The chromosomal evolution in Rhipidomys was associated with karyotypical orthoselection. The HME probes revealed that seven syntenic probably ancestral blocks for Sigmodontinae are present in Rhipidomys. An additional syntenic block described here is suggested as part of the subfamily ancestral karyotype. We also define five synapomorphies that can be used as chromosomal signatures for Rhipidomys.



2021 ◽  
Vol 8 ◽  
Author(s):  
Devika Gautam ◽  
Ashutosh Vats ◽  
Prasanna Pal ◽  
Avijit Haldar ◽  
Sachinandan De

The Anti-Müllerian Hormone (AMH) is a member of the transforming growth factor beta (TGF-β) superfamily, playing a significant role in cell proliferation, differentiation and apoptosis. In females, AMH is secreted throughout their reproductive life span from ovaries, whereas in males it is secreted by gonadal cells at a very early stage of testicular development. AMH is a promising marker of ovarian reserve in women and can be used to measure the female reproductive lifespan. In the present study, we cloned and sequenced the GC richAMHgene from Indian riverine buffalo (Bubalus bubalis)and goat (Capra hircus). Obtained sequences were compared to the AMH sequences of other mammals, and corresponding amino acid sequences revealed that the caprine and bovine AMH sequences are more closely related to each other than to those of other mammals. Furthermore, we analyzed the chromosomal localization ofAMHgenes in mammalian species to understand potential syntenic relationship. TheAMHgene is localized between the sequences for theSF3AandJSRP1genes and maintains this precise location in relation to other nearby genes. The dN/dS ratio ofAMHgene did not indicate any pressure for either positive or negative selection; thus, the physiological function of theAMHgene in the reproduction of these two ruminant species remains very vital. Similar to other mammals, theAMHgene may be an important indicator for regulating female reproductive biology function in bovine, cetacean, caprine, and camelidae.



2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Man Zhang ◽  
Ping Li ◽  
Xiaolan Yan ◽  
Jia Wang ◽  
Tangren Cheng ◽  
...  

Abstract Background Phosphatidylethanolamine-binding proteins (PEBPs) constitute a common gene family found among animals, plants and microbes. Plant PEBP proteins play an important role in regulating flowering time, plant architecture as well as seed dormancy. Though PEBP family genes have been well studied in Arabidopsis and other model species, less is known about these genes in perennial trees. Results To understand the evolution of PEBP genes and their functional roles in flowering control, we identified 56 PEBP members belonging to three gene clades (MFT-like, FT-like, and TFL1-like) and five lineages (FT, BFT, CEN, TFL1, and MFT) across nine Rosaceae perennial species. Structural analysis revealed highly conserved gene structure and protein motifs among Rosaceae PEBP proteins. Codon usage analysis showed slightly biased codon usage across five gene lineages. With selection pressure analysis, we detected strong purifying selection constraining divergence within most lineages, while positive selection driving the divergence of FT-like and TFL1-like genes from the MFT-like gene clade. Spatial and temporal expression analyses revealed the essential role of FT in regulating floral bud breaking and blooming in P. mume. By employing a weighted gene co-expression network approach, we inferred a putative FT regulatory module required for dormancy release and blooming in P. mume. Conclusions We have characterized the PEBP family genes in nine Rosaceae species and examined their phylogeny, genomic syntenic relationship, duplication pattern, and expression profiles during flowering process. These results revealed the evolutionary history of PEBP genes and their functions in regulating floral bud development and blooming among Rosaceae tree species.



2020 ◽  
Author(s):  
Man Zhang ◽  
Ping Li ◽  
Xiaolan Yan ◽  
Jia Wang ◽  
Tangren Cheng ◽  
...  

Abstract BackgroundPhosphatidylethanolamine-binding proteins (PEBPs) constitute a common gene family found among animals, plants and microbes. Plant PEBP proteins play an important role in regulating flowering time, plant architecture as well as seed dormancy. Though PEBP family genes have been well studied in Arabidopsis and other model species, less is known about these genes in perennial trees. ResultsTo understand the evolution of PEBP genes and their functional role in flowering control, we identified 56 PEBP members belonging to three gene clades (MFT-like, FT-like, and TFL1-like) and five lineages (FT, BFT, CEN, TFL1, and MFT) across nine Rosaceae perennial species. Structural analysis revealed highly conserved gene structure and protein motifs among Rosaceae PEBP proteins. Codon usage analysis showed slightly biased codon usage across five gene lineages. With selection pressure analysis, we detected strong purifying selection constraining divergence within most lineages, while positive selection driving the divergence of FT-like and TFL1-like genes from the MFT-like gene clade. Spatial and temporal expression analyses revealed the essential role of FT in regulating floral bud breaking and blooming in P. mume. By employing a weighted gene co-expression network approach, we inferred a putative FT regulatory module required for dormancy release and blooming in P. mume. ConclusionsWe have characterized the PEBP family genes in nine Rosaceae species and examined their phylogeny, genomic syntenic relationship, duplication pattern, and expression profiles during flowering process. These results revealed the evolutionary history of PEBP genes and their functions in regulating floral bud development and blooming among Rosaceae tree species.



Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1503
Author(s):  
Yuting Xiang ◽  
Yahui Wu ◽  
Haoran Zhang ◽  
Jikui Wu ◽  
Junling Zhang

Although its function in mammalian gonads has been gradually recognized, the expression and function of calretinin (CALB2)—a Ca2+-binding protein—in the testis and ovary of fish are still unclear. Here, we identified the cDNA sequences of calb2 in Paralichthys olivaceus (P. olivaceus); analyzed its gene structure and phylogenetic and syntenic relationship by bioinformatics; and investigated its tissue distribution and localization in the gonads by real-time PCR, western blotting, and immunohistochemistry. The P. olivaceuscalb2 gene has 11 exons and 10 introns, and the full-length cDNA is 1457 bp, including an open reading frame (ORF) of 816 bp encoding 271 amino acids. The CALB2 of P. olivaceus has a higher homology with Lates calcarifer (99%) compared with other species. The conserved synteny of calb2 neighboring gene loci was also detected in fish. Real-time PCR showed that the expression of calb2 mRNA is abundant not only in the brain, but also in the gonads, and exhibits a higher expression in the testis than in the ovary. Western blotting indicated that the CALB2 protein has a higher expression in the testis compared with the ovary. Immunohistochemistry demonstrated that the CALB2 protein appears in Leydig cells and the ovarian germ epithelium. These results reveal that calb2 plays an important role in the gonads of P. olivaceus.



PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8358 ◽  
Author(s):  
Yong Zhou ◽  
Yuan Cheng ◽  
Chunpeng Wan ◽  
Jingwen Li ◽  
Youxin Yang ◽  
...  

The plant DNA-binding with one finger (Dof) gene family is a class of plant-specific transcription factors that play vital roles in many biological processes and stress responses. In the present study, a total of 36 ClDof genes were identified in the watermelon genome, which were unevenly distributed on 10 chromosomes. Phylogenetic analysis showed that the ClDof proteins could be divided into nine groups, and the members in a particular group had similar motif arrangement and exon–intron structure. Synteny analysis indicated the presence of a large number of syntenic relationship events between watermelon and cucumber. In promoter analysis, five kinds of stress-related and nine kinds of hormone-related cis-elements were identified in the promoter regions of ClDof genes. We then analyzed the expression patterns of nine selected ClDof genes in eight specific tissues by qRT-PCR, and the results showed that they have tissue-specific expression patterns. We also evaluated the expression levels of 12 selected ClDof genes under salt stress and ABA treatments using qRT-PCR. As a result, they showed differential expression under these treatments, suggesting their important roles in stress response. Taken together, our results provide a basis for future research on the biological functions of Dof genes in watermelon.



2019 ◽  
Vol 20 (17) ◽  
pp. 4115
Author(s):  
Feng Wen ◽  
Liangwei Xu ◽  
Yuebin Xie ◽  
Liang Liao ◽  
Tongjian Li ◽  
...  

GT factors play critical roles in plant growth and development and in response to various environmental stimuli. Considering the new functions of GT factors on the regulation of plant stress tolerance and seeing as few studies on Brachypodium distachyon were available, we identified GT genes in B. distachyon, and the gene characterizations and phylogenies were systematically analyzed. Thirty-one members of BdGT genes were distributed on all five chromosomes with different densities. All the BdGTs could be divided into five subfamilies, including GT-1, GT-2, GTγ, SH4, and SIP1, based upon their sequence homology. BdGTs exhibited considerably divergent structures among each subfamily according to gene structure and conserved functional domain analysis, but the members within the same subfamily were relatively structure-conserved. Synteny results indicated that a large number of syntenic relationship events existed between rice and B. distachyon. Expression profiles indicated that the expression levels of most of BdGT genes were changed under abiotic stresses and hormone treatments. Moreover, the co-expression network exhibited a complex regulatory network between BdGTs and BdWRKYs as well as that between BdGTs and BdMAPK cascade gene. Results showed that GT factors might play multiple functions in responding to multiple environmental stresses in B. distachyon and participate in both the positive and negative regulation of WRKY- or MAPK-mediated stress response processes. The genome-wide analysis of BdGTs and the co-regulation network under multiple stresses provide valuable information for the further investigation of the functions of BdGTs in response to environment stresses.



2019 ◽  
Author(s):  
Camous Moslemi ◽  
Cathrine Kiel Skovbjerg ◽  
Sara Moeskjær ◽  
Stig Uggerhøj Andersen

AbstractMotivationThe amorphous nature of genes combined with the prevalence of duplication events makes establishing correct genetic phylogenies challenging.Since homologous gene groups are traditionally formed on basis of sequence similarity, both orthologs and paralogs are often placed in the same gene group by existing tools. Certain tools such as PoFF take syntenic relationship of genes into consideration when forming gene groups. However, a method to form gene groups consisting of only true syntelogs has not yet been developed.In order to obtain orthologous gene groups consisting of the most likely syntelogs we need a method to filter out paralogs. If one strain has two or more copies of the same gene in a gene group we want to keep only the true syntelog in the group, and remove the paralogous copies by distinguishing between the two using synteny analysis.ResultsWe present a novel algorithm for measuring the degree of synteny shared between two genes and successfully disambiguate gene groups. This synteny measure is the basis for a number of other useful functions such as gene neighbourhood visualisation to inspect suspect gene groups, strain visualisation for assessing assembly quality and finding genomic areas of interest, and chromosome/plasmid classification of contigs in partially classified datasets.AvailabilityThe latest version of Syntenizer 3000 can be downloaded from the GitHub repository at https://github.com/kamiboy/Syntenizer3000/Consult the manual.pdf file in the repository for instructions on how to build and use the tool, as well as a in depth explanation of the algorithms utilised.



2016 ◽  
Vol 1 (2) ◽  
pp. 65
Author(s):  
Muhammad Ilyas ◽  
Asif Mir ◽  
Sobiah Rauf ◽  
Sidrah Nazir ◽  
Humera Javed

Huntington gene is located on chromosome 4p16.3 IT15 locus considered a major causative gene of Huntington disorder. HTT is a neurodegenerative disorder mutation in gene cause abnormal movements and psychiatric disturbances. HTT is inherited in an autosomal dominant manner with almost complete penetrance and till now, no research studies provide insight into HTT gene. Bioinformatics analysis includes transcription factors binding sites, phylogenetic studies with reference to various selected orthologs and syntenic relationship of HTT gene. Our study showed that in HTT gene majority of the portion is conserved among two orthologs chimpanzee and mouse in significance to human. These studies also revealed information about conservation of genes among different ortholog species and their evolutionary relationship.



Sign in / Sign up

Export Citation Format

Share Document