scholarly journals Genomic characterization of three novel Basilisk-like phages infecting Bacillus anthracis

BMC Genomics ◽  
2018 ◽  
Vol 19 (1) ◽  
Author(s):  
J. Farlow ◽  
D. Bolkvadze ◽  
L. Leshkasheli ◽  
I. Kusradze ◽  
A. Kotorashvili ◽  
...  
2012 ◽  
Vol 22 (8) ◽  
pp. 1512-1524 ◽  
Author(s):  
M. E. Zwick ◽  
S. J. Joseph ◽  
X. Didelot ◽  
P. E. Chen ◽  
K. A. Bishop-Lilly ◽  
...  

2020 ◽  
Vol 20 (7) ◽  
pp. 491-507 ◽  
Author(s):  
Aparna Banerjee ◽  
Vikas K. Somani ◽  
Priyanka Chakraborty ◽  
Rakesh Bhatnagar ◽  
Rajeev K. Varshney ◽  
...  

Background: Thermophilic bacilli in both aerobic or facultative anaerobic forms have been isolated for over a hundred years from different mesophilic or thermophilic environments as they are potential source of bioactive secondary metabolites. But the taxonomic resolution in the Bacillus genus at species or at strain level is very challenging for the insufficient divergence of the 16S rRNA genes. One such recurring problem is among Bacillus anthracis, B. cereus and B. thuringiensis. The disease-causing B. anthracis strains have their characteristic virulence factors coded in two wellknown plasmids, namely pXO1 (toxin genes) and pXO2 (capsule genes). Objective: The present study aimed at the molecular and genomic characterization of a recently reported thermophilic and environmental isolate of B. anthracis, strain PFAB2. Methods: We performed comparative genomics between the PFAB2 genome and different strains of B. anthracis, along with closely related B. cereus strains. Results: The pangenomic analysis suggests that the PFAB2 genome harbors no complete prophage genes. Cluster analysis of Bray-Kurtis similarity resemblance matrix revealed that gene content of PFAB2 is more closely related to other environmental strains of B. anthracis. The secretome analysis and the in vitro and in vivo pathogenesis experiments corroborate the avirulent phenotype of this strain. The most probable explanation for this phenotype is the apparent absence of plasmids harboring genes for capsule biosynthesis and toxins secretion in the draft genome. Additional features of PFAB2 are good spore-forming and germinating capabilities and rapid replication ability. Conclusion: The high replication rate in a wide range of temperatures and culture media, the nonpathogenicity, the good spore forming capability and its genomic similarity to the Ames strain together make PFAB2 an interesting model strain for the study of the pathogenic evolution of B. anthracis.


BMC Genomics ◽  
2018 ◽  
Vol 19 (1) ◽  
Author(s):  
J Farlow ◽  
D Bolkvadze ◽  
L Leshkasheli ◽  
I Kusradze ◽  
A Kotorashvili ◽  
...  

Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
AS Lima ◽  
B Lukas ◽  
J Novak ◽  
AC Figueiredo ◽  
LG Pedro ◽  
...  

2020 ◽  
Vol 20 (7) ◽  
pp. 490-500 ◽  
Author(s):  
Justin S. Becker ◽  
Amir T. Fathi

The genomic characterization of acute myeloid leukemia (AML) by DNA sequencing has illuminated subclasses of the disease, with distinct driver mutations, that might be responsive to targeted therapies. Approximately 15-23% of AML genomes harbor mutations in one of two isoforms of isocitrate dehydrogenase (IDH1 or IDH2). These enzymes are constitutive mediators of basic cellular metabolism, but their mutated forms in cancer synthesize an abnormal metabolite, 2- hydroxyglutarate, that in turn acts as a competitive inhibitor of multiple gene regulatory enzymes. As a result, leukemic IDH mutations cause changes in genome structure and gene activity, culminating in an arrest of normal myeloid differentiation. These discoveries have motivated the development of a new class of selective small molecules with the ability to inhibit the mutant IDH enzymes while sparing normal cellular metabolism. These agents have shown promising anti-leukemic activity in animal models and early clinical trials, and are now entering Phase 3 study. This review will focus on the growing preclinical and clinical data evaluating IDH inhibitors for the treatment of IDH-mutated AML. These data suggest that inducing cellular differentiation is central to the mechanism of clinical efficacy for IDH inhibitors, while also mediating toxicity for patients who experience IDH Differentiation Syndrome. Ongoing trials are studying the efficacy of IDH inhibitors in combination with other AML therapies, both to evaluate potential synergistic combinations as well as to identify the appropriate place for IDH inhibitors within existing standard-of-care regimens.


Sign in / Sign up

Export Citation Format

Share Document