scholarly journals Transcriptional response of Asarum heterotropoides Fr. Schmidt var. mandshuricum (Maxim.) Kitag. leaves grown under full and partial daylight conditions

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhiqing Wang ◽  
Haiqin Ma ◽  
Min Zhang ◽  
Ziqing Wang ◽  
Yixin Tian ◽  
...  

Abstract Background Asarum heterotropides Fr. Schmidt var. mandshuricum (Maxim.) Kitag. is an important medicinal and industrial plant, which is used in the treatment of various diseases. The main bioactive ingredient is the volatile oil having more than 82 identified components of which methyleugenol, safrole, myristicin, and toluene account for about 70% of the total volume. As a sciophyte plant, the amount of light it absorbs through leaves is an important factor for growth and metabolism. Results We grew Asarum plants under full, 50, 28, and 12% sunlight conditions to investigate the effect of different light irradiances on the four major volatile oil components. We employed de novo transcriptome sequencing to understand the transcriptional behavior of Asarum leaves regarding the biosynthetic pathways of the four volatile oil components, photosynthesis and biomass accumulation, and hormone signaling. Our results demonstrated that the increasing light conditions promoted higher percent of the four components. Under full sunlight conditions, cinnamyl alcohol dehydrogenase and cytochrome p450719As were upregulated and led the increased methyleugenol, safrole, and myristicin. The transcriptomic data also showed that Asarum leaves, under full sunlight conditions, adjust their photosynthesis-antenna proteins as a photoprotective response with the help of carotenoids. Plant hormone-signaling related genes were also differentially expressed between full sunlight and low light conditions. Conclusions High light induces accumulation of major bioactive ingredients A. heterotropides volatile oil and this is ascribed to upregulation of key genes such as cinnamyl alcohol dehydrogenase and cytochrome p450719As. The transcriptome data presented here lays the foundation of further understanding of light responses in sciophytes and provides guidance for increasing bioactive molecules in Asarum.

1998 ◽  
Vol 49 (2) ◽  
pp. 295-306 ◽  
Author(s):  
Nabila Yahiaoui, Christiane Marque ◽  
Hélène Corbière ◽  
Alain Michel Boudet

2001 ◽  
Vol 28 (11) ◽  
pp. 1085
Author(s):  
Fiona M. McAlister ◽  
Wendy R. Lewis-Henderson ◽  
Colin L. D. Jenkins ◽  
John M. Watson

A perennial ryegrass (Lolium perenne L.) cDNA library was screened with a PCR-amplified cad DNA fragment generated from ryegrass cDNA template using degenerate oligonucleotide primers. A full-length cDNA (LpeCad1) was isolated and confirmed to encode a cinnamyl alcohol dehydrogenase (CAD) enzyme by expression of activity in Escherichia coli. The recombinant enzyme catalyses conversion of coniferaldehyde and sinapaldehyde with similar efficiency, and apparent K m values below 10 µM were determined for these substrates, whereas weak substrate inhibition occurs above this concentration. The predicted perennial ryegrass CAD was very similar (88–87percnt; amino acid sequence identity) to the only other monocotyledonous plant CAD sequences available, those of maize and sugarcane, respectively. Southern blot hybridization analysis indicated that there may be two or three cad genes, or alleles, in perennial ryegrass. The ryegrass LpeCad1 gene resembles the maize cadgene in showing strong expression in root and stem tissues, but is also expressed at lower levels in shoot, leaf sheath, leaf blade and floral tissues.


Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 174
Author(s):  
Lakshmi Kasirajan ◽  
Prathima Perumal Thirugnanasambandam ◽  
Agnelo Furtado ◽  
Frikkie C. Botha ◽  
Robert J. Henry

Lignocellulosic biomasses available in abundance is the most promising raw material for alternate energy production considering the issues of dwindling oil prices, and global warming. Recently, Erianthus arundinaceous has been identified as a potential target for second generation biofuel crop due to its high biomass production, and adaptability to extreme growth environments. Lignin is a major plant cell wall polymer indispensable for plant growth and development, however it hinders the saccharification of lignocellulosic biomass. Based on the previous transcriptome studies in a set of sugarcane genotypes differing for lignin content, genes encoding cinnamyl alcohol dehydrogenase (CAD), and Phenylalanine ammonia lyase (PAL) genes playing major roles in genetic regulation of lignin production have been cloned and characterized from an Erianthus clone IK 76-81. The genomic region of EriCAD was 3524 bp sequence containing four exons and three introns, among which the exon 1&2 of 88 and 80 bp were conserved with sorghum and Miscanthus CADs. The coding region of CAD was identified with 1086 bp open reading frame (ORF), a 68 bp 5′ untranslated region (UTR), and a 86 bp 3′ untranslated region (UTR). In the PROSITE analysis, a zinc-containing alcohol dehydrogenase signature (GHEVVGEVVEVGPEV) and an NADP-binding domain motif (GLGGLG) was identified. Similarly sequence analysis of PAL showed an ORF of 2106 bp encoding for 702 amino acid residues. It was flanked by 172 bp of 5′ UTR and 121 bp of 3′ UTR. This sequence information on PAL and CAD from Erianthus might be useful for subsequent research on lignin modification for improved biomass conversion.


Sign in / Sign up

Export Citation Format

Share Document