scholarly journals Long-term leukocyte reconstitution in NSG mice transplanted with human cord blood hematopoietic stem and progenitor cells

2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Annette Audigé ◽  
Mary-Aude Rochat ◽  
Duo Li ◽  
Sandra Ivic ◽  
Audrey Fahrny ◽  
...  
2021 ◽  
Vol 12 ◽  
pp. 204173142110448
Author(s):  
Gordian Born ◽  
Marina Nikolova ◽  
Arnaud Scherberich ◽  
Barbara Treutlein ◽  
Andrés García-García ◽  
...  

Hematopoietic stem and progenitor cells (HSPCs) are frequently located around the bone marrow (BM) vasculature. These so-called perivascular niches regulate HSC function both in health and disease, but they have been poorly studied in humans due to the scarcity of models integrating complete human vascular structures. Herein, we propose the stromal vascular fraction (SVF) derived from human adipose tissue as a cell source to vascularize 3D osteoblastic BM niches engineered in perfusion bioreactors. We show that SVF cells form self-assembled capillary structures, composed by endothelial and perivascular cells, that add to the osteogenic matrix secreted by BM mesenchymal stromal cells in these engineered niches. In comparison to avascular osteoblastic niches, vascularized BM niches better maintain immunophenotypically-defined cord blood (CB) HSCs without affecting cell proliferation. In contrast, HSPCs cultured in vascularized BM niches showed increased CFU-granulocyte-erythrocyte-monocyte-megakaryocyte (CFU-GEMM) numbers. The vascularization also contributed to better preserve osteogenic gene expression in the niche, demonstrating that niche vascularization has an influence on both hematopoietic and stromal compartments. In summary, we have engineered a fully humanized and vascularized 3D BM tissue to model native human endosteal perivascular niches and revealed functional implications of this vascularization in sustaining undifferentiated CB HSPCs. This system provides a unique modular platform to explore hemato-vascular interactions in human healthy/pathological hematopoiesis.


Blood ◽  
2020 ◽  
Vol 136 (21) ◽  
pp. 2410-2415 ◽  
Author(s):  
Peng Hua ◽  
Joanna Hester ◽  
George Adigbli ◽  
Rong Li ◽  
Bethan Psaila ◽  
...  

Abstract Although cytokine-mediated expansion of human hematopoietic stem cells (HSCs) can result in high yields of hematopoietic progenitor cells, this generally occurs at the expense of reduced bone marrow HSC repopulating ability, thereby limiting potential therapeutic applications. Because bromodomain-containing proteins (BCPs) have been demonstrated to regulate mouse HSC self-renewal and stemness, we screened small molecules targeting various BCPs as potential agents for ex vivo expansion of human HSCs. Of 10 compounds tested, only the bromodomain and extra-terminal motif inhibitor CPI203 enhanced the expansion of human cord blood HSCs without losing cell viability in vitro. The expanded cells also demonstrated improved engraftment and repopulation in serial transplantation assays. Transcriptomic and functional studies showed that the expansion of long-term repopulating HSCs was accompanied by synchronized expansion and maturation of megakaryocytes consistent with CPI203-mediated reprogramming of cord blood hematopoietic stem and progenitor cells. This approach may therefore prove beneficial for ex vivo gene editing, for enhanced platelet production, and for the improved usage of cord blood for transplantation research and therapy.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1487
Author(s):  
Kathy-Ann Secker ◽  
Lukas Bruns ◽  
Hildegard Keppeler ◽  
Johan Jeong ◽  
Thomas Hentrich ◽  
...  

Mixed lineage leukemia (MLL) (KMT2A) rearrangements (KMT2Ar) play a crucial role in leukemogenesis. Dependent on age, major differences exist regarding disease frequency, main fusion partners and prognosis. In infants, up to 80% of acute lymphoid leukemia (ALL) bear a MLL translocation and half of them are t(4;11), resulting in a poor prognosis. In contrast, in adults only 10% of acute myeloid leukemia (AML) bear t(9;11) with an intermediate prognosis. The reasons for these differences are poorly understood. Recently, we established an efficient CRISPR/Cas9-based KMT2Ar model in hematopoietic stem and progenitor cells (HSPCs) derived from human cord blood (huCB) and faithfully mimicked the underlying biology of the disease. Here, we applied this model to HSPCs from adult bone marrow (huBM) to investigate the impact of the cell of origin and fusion partner on disease development. Both genome-edited infant and adult KMT2Ar cells showed monoclonal outgrowth with an immature morphology, myelomonocytic phenotype and elevated KMT2Ar target gene expression comparable to patient cells. Strikingly, all KMT2Ar cells presented with indefinite growth potential except for MLL-AF4 huBM cells ceasing proliferation after 80 days. We uncovered FFAR2, an epigenetic tumor suppressor, as potentially responsible for the inability of MLL-AF4 to immortalize adult cells under myeloid conditions.


Sign in / Sign up

Export Citation Format

Share Document