cytochrome p450 genes
Recently Published Documents


TOTAL DOCUMENTS

288
(FIVE YEARS 59)

H-INDEX

48
(FIVE YEARS 5)

Chemosphere ◽  
2021 ◽  
pp. 133173
Author(s):  
Jianan Sun ◽  
Valliappan Karuppiah ◽  
Yaqian Li ◽  
Pandian Sivakumar ◽  
Subramanian Kumaran ◽  
...  

2021 ◽  
Vol 62 (4) ◽  
pp. 316-324
Author(s):  
Susan Omar Rasool ◽  
Ata Mirzaei Nahr ◽  
Sania Eskandari ◽  
Milad Hosseinzadeh ◽  
Soheila Asoudeh Moghanloo ◽  
...  

While COVID-19 liver injuries have been reported in various studies, concerns are raised about disease-drug reactions in COVID-19 patients. In this study, we examined the hypothesis of gene-disease interactions in an in-silico model of gene expression to seek changes in cytochrome P450 genes. The Gene Expression Omnibus dataset of the liver autopsy in deceased COVID-19 patients (GSE150316) was used in this study. Non-alcoholic fatty liver biopsies were used as the control (GSE167523). Besides, gene expression analysis was performed using the DESeq/EdgeR method. The GO databases were used, and the paths were set at p<0.05. The drug-gene interaction database (DGIdb) was searched for interactions. According to the results, 5,147 genes were downregulated, and 5,122 genes were upregulated in SARS-CoV-2 compared to healthy livers. Compared to the cytochromes, 34 cytochromes were downregulated, while 4 cytochromes were upregulated among the detected differentially expressed genes (DEG). The drug-gene interaction database (DGIdb) provided a list of medications with potential interactions with COVID-19 as well as metacetamol, phenethyl isocyanate, amodiaquine, spironolactone, amiloride, acenocoumarol, clopidogrel, phenprocoumon, trimipramine, phenazepam, etc. Besides, dietary compounds of isoflavones, valerian, and coumarin, as well as caffeine metabolism were shown to have possible interactions with COVID-19 disease. Our study showed that expression levels of cytochrome P450 genes could get altered following COVID-19. In addition, a drug-disease interaction list is recommended to be used for evaluations in clinical considerations in further studies.


2021 ◽  
Author(s):  
Michael A Gomez ◽  
Kodiak C Berkoff ◽  
Baljeet K Gill ◽  
Anthony T Iavarone ◽  
Samantha E Lieberman ◽  
...  

Cassava (Manihot esculenta Crantz) is a starchy root crop that supports over a billion people in tropical and subtropical regions of the world. This staple, however, produces toxic cyanogenic compounds and requires processing for safe consumption. Excessive consumption of insufficiently processed cassava, in combination with protein-poor diets, can have neurodegenerative impacts. Reducing the cyanogen content by conventional breeding is problematic due to the heterozygous nature of the crop; recombination will generally disrupt a clonally propagated cultivar's suite of desirable traits. To reduce cyanide levels in cassava, we used CRISPR-mediated mutagenesis to disrupt the cytochrome P450 genes CYP79D1 and CYP79D2 whose protein products catalyze the first step in cyanogenic glucoside biosynthesis. Knockout of both genes eliminated cyanide in leaves and storage roots of cassava accession 60444 and the West African, farmer-preferred cultivar TME 419. Although knockout of CYP79D2 alone resulted in significant reduction of cyanide, mutagenesis of CYP79D1 did not, indicating these paralogs have diverged in their function. Our work demonstrates cassava genome editing for food safety, reduced processing requirements, and environmental benefits that could be readily extended to other farmer-preferred cultivars.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xi Yuan ◽  
Hui Wang ◽  
Yan Bi ◽  
Yuqing Yan ◽  
Yizhou Gao ◽  
...  

NAC transcriptional factors constitute a large family in rice and some of them have been demonstrated to play crucial roles in rice immunity. The present study investigated the function and mechanism of ONAC066 in rice immunity. ONAC066 shows transcription activator activity that depends on its C-terminal region in rice cells. ONAC066-OE plants exhibited enhanced resistance while ONAC066-Ri and onac066-1 plants showed attenuated resistance to Magnaporthe oryzae. A total of 81 genes were found to be up-regulated in ONAC066-OE plants, and 26 of them were predicted to be induced by M. oryzae. Four OsWRKY genes, including OsWRKY45 and OsWRKY62, were up-regulated in ONAC066-OE plants but down-regulated in ONAC066-Ri plants. ONAC066 bound to NAC core-binding site in OsWRKY62 promoter and activated OsWRKY62 expression, indicating that OsWRKY62 is a ONAC066 target. A set of cytochrome P450 genes were found to be co-expressed with ONAC066 and 5 of them were up-regulated in ONAC066-OE plants but down-regulated in ONAC066-Ri plants. ONAC066 bound to promoters of cytochrome P450 genes LOC_Os02g30110, LOC_Os06g37300, and LOC_Os02g36150 and activated their transcription, indicating that these three cytochrome P450 genes are ONAC066 targets. These results suggest that ONAC066, as a transcription activator, positively contributes to rice immunity through modulating the expression of OsWRKY62 and a set of cytochrome P450 genes to activate defense response.


2021 ◽  
Author(s):  
Kathy Darragh ◽  
David R Nelson ◽  
Santiago R Ramirez

The birth-and-death model of multigene family evolution describes how families can expand by duplication and contract by gene deletion and formation of pseudogenes. The phylogenetic stability of a gene is thought to be related to the degree of functional importance. However, it is unclear how much evolution of a gene in a gene family is driven by adaptive versus neutral processes. The cytochrome P450s are one of the most diverse and well-studied multigene families, involved in both physiological and xenobiotic functions. Bees have a high toxin exposure due to their diet of nectar and pollen, as well as the resin-collecting behavior exhibited by some bees. Here, we describe the P450s of the orchid bee Euglossa dilemma. Orchid bees are a neotropical clade in which males form perfume bouquets used in courtship displays by collecting a diverse set of volatile compounds, resulting in high chemical compound exposure. We conducted phylogenetic and selection analyses across ten bee species encompassing three bee families. We do not find a relationship between the ecology of a bee species and its P450 repertoire. Our analyses reveal that P450 clades can be classified into stable and unstable clades, and that genes involved in xenobiotic metabolism are more likely to belong to unstable clades. Furthermore, we find that unstable clades are under more dynamic evolutionary pressures, with signals of adaptive evolution detected, suggesting that both gene duplication and positive selection driving sequence divergence have played a role in the diversification of bee P450s. Our works highlights the complexity of multigene family evolution which does not always follow generalized predictions.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ke Chen ◽  
Yajun Peng ◽  
Liang Zhang ◽  
Long Wang ◽  
Donghai Mao ◽  
...  

Abstract Background Chinese sprangletop [Leptochloa chinensis (L.) Nees] is an annual malignant weed, which can often be found in paddy fields. Cyhalofop-butyl is a specialized herbicide which is utilized to control L. chinensis. However, in many areas, L. chinensis has become tolerant to this key herbicide due to its continuous long-term use. Results In this study, we utilized a tolerant (LC18002) and a sensitive (LC17041) L. chinensis populations previously identified in our laboratory, which were divided into four different groups. We then employed whole transcriptome analysis to identify candidate genes which may be involved in cyhalofop-butyl tolerance. This analysis resulted in the identification of six possible candidate genes, including three cytochrome P450 genes and three ATP-binding cassette transporter genes. We then carried out a phylogenetic analysis to identify homologs of the differentially expressed cytochrome P450 genes. This phylogenetic analysis indicated that all genes have close homologs in other species, some of which have been implicated in non-target site resistance (NTSR). Conclusions This study is the first to use whole transcriptome analysis to identify herbicide non-target resistance genes in L. chinensis. The differentially expressed genes represent promising targets for better understanding herbicide tolerance in L. chinensis. The six genes belonging to classes already associated in herbicide tolerance may play important roles in the metabolic resistance of L. chinensis to cyhalofop-butyl, although the exact mechanisms require further study.


2021 ◽  
Author(s):  
Lucia Sessa ◽  
Nicolas Pedrini ◽  
Nora Altier ◽  
Eduardo Abreo

Insect Epicuticle hydrocarbons (CHC) are known to be important determinants in the susceptibility degree of insects to fungal entomopathogens. Five Beauveria bassiana isolates were phenotypically analyzed regarding their response to CHC nutrition and their pathogenicity and virulence towards high fungal-susceptible Thaumastocoris peregrinus and low fungal-susceptible Piezodorus guildinii, which are important hemipteran pests in eucalyptus and soybean plantations, respectively. Two of these isolates, resulting the most (ILBB308) and the least (ILBB299) virulent to P. guildinii, were also evaluated at gene expression level after growth on n-pentadecane. B. bassiana most virulent isolate ILBB308 showed the lowest growth on most evaluated CHC media. However, this isolate distinctively induced most of the analyzed genes involved in CHC assimilation, cuticle degradation and stress tolerance. Virulence towards low susceptibility P. guildinii was enhanced in both hypervirulent ILB308 and hypovirulent ILBB299 isolates after growth on n-pentadecane as the sole carbon source, whereas virulence enhancement towards high susceptibility T. peregrinus was not observed in alkane-grown fungi. Virulence enhancement towards P. guildinii could be mostly explained by a priming effect produced by CHC on the induction of some genes related to hydrocarbon assimilation in ILB 205 and ILB 308, such as hydrophobin (Bbhyd2) and cytochrome P450 genes (BbCyp52g11 and BbCyp52x1), and partially by the induction of genes related to cuticle degradation (Bbchit and Bbcdep1) and stress tolerance (Bbsod1) observed only in ILB308.


2021 ◽  
Author(s):  
Lulu Dai ◽  
Jie Zheng ◽  
Jiaqi Ye ◽  
Hui Chen

Abstract Leptographium qinlingensis is a fungal associate of the Chinese white pine beetle (Dendroctonus armandi) and a pathogen of the Chinese white pine (Pinus armandi) that must overcome the terpenoid oleoresin defences of host trees. We identified and phylogenetically analysed the cytochrome P450 (CYP) genes in the transcriptome of L. qinlingensis. Through analyses of the growth rates on different nutritional media and inhibition by terpenoids, the expression profiles of six CYPs in the mycelium of L. qinlingensis grown on different media or treated with terpenoids were determined. The CYP evolution predicted that most of the CYPs occurred in a putative common ancestor shared between L. qinlingensis and G. clavigera. This fungus is symbiotic with D. armandi and has more similarity with G. clavigera, which can retrieve nutrition from pine wood and utilize monoterpenes as the sole carbon source. Some CYP genes might be involved in the metabolism of fatty acids and detoxification of terpenes and phenolics, as observed in other blue-stained fungi, which also indicates the pathogenic properties of L. qinlingensis in Chinese white pine.


Sign in / Sign up

Export Citation Format

Share Document