scholarly journals Electrical stimulation of the common peroneal nerve and its effects on the relationship between corticomuscular coherence and motor control in healthy adults

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Tadaki Koseki ◽  
Daisuke Kudo ◽  
Natsuki Katagiri ◽  
Shigehiro Nanba ◽  
Mitsuhiro Nito ◽  
...  

Abstract Background Sensory input via neuromuscular electrical stimulation (NMES) may contribute to synchronization between motor cortex and spinal motor neurons and motor performance improvement in healthy adults and stroke patients. However, the optimal NMES parameters used to enhance physiological activity and motor performance remain unclear. In this study, we focused on sensory feedback induced by a beta-band frequency NMES (β-NMES) based on corticomuscular coherence (CMC) and investigated the effects of β-NMES on CMC and steady-state of isometric ankle dorsiflexion in healthy volunteers. Twenty-four participants received β-NMES at the peak beta-band CMC or fixed NMES (f-NMES) at 100 Hz on different days. NMES was applied to the right part of the common peroneal nerve for 20 min. The stimulation intensity was 95% of the motor threshold with a pulse width of 1 ms. The beta-band CMC and the coefficient of variation of force (Force CV) were assessed during isometric ankle dorsiflexion for 2 min. In the complementary experiment, we applied β-NMES to 14 participants and assessed beta-band CMC and motor evoked potentials (MEPs) with transcranial magnetic stimulation. Results No significant changes in the means of beta-band CMC, Force CV, and MEPs were observed before and after NMES conditions. Changes in beta-band CMC were correlated to (a) changes in Force CV immediately, at 10 min, and at 20 min after β-NMES (all cases, p < 0.05) and (b) changes in MEPs immediately after β-NMES (p = 0.01). No correlations were found after f-NMES. Conclusions Our results suggest that the sensory input via NMES was inadequate to change the beta-band CMC, corticospinal excitability, and voluntary motor output. Whereas, the β-NMES affects the relationship between changes in beta-band CMC, Force CV, and MEPs. These findings may provide the information to develop NMES parameters for neurorehabilitation in patients with motor dysfunction.

2021 ◽  
Author(s):  
Tadaki Koseki ◽  
Daisuke Kudo ◽  
Natsuki Katagiri ◽  
Shigehiro Nanba ◽  
Mitsuhiro Nito ◽  
...  

Abstract Background: Sensory input via neuromuscular electrical stimulation (NMES) may contribute to synchronization between motor cortex and spinal motor neurons and motor performance improvement in healthy adults and stroke patients. However, the optimal NMES parameters used to enhance physiological activity and motor performance remain unclear. In this study, we focused on sensory feedback induced by a beta-band frequency NMES (β-NMES) based on corticomuscular coherence (CMC) and investigated the effects of β-NMES on CMC and steady-state of isometric ankle dorsiflexion in healthy volunteers. Twenty-four participants received β-NMES at the peak beta-band CMC or fixed NMES (f-NMES) at 100 Hz on different days. NMES was applied to the right part of the common peroneal nerve for 20 min. The stimulation intensity was 95% of the motor threshold with a pulse width of 1 ms. The beta-band CMC and the coefficient of variation of force (Force CV) were assessed during isometric ankle dorsiflexion for 2 min. In the complementary experiment, we applied β-NMES to 14 participants and assessed beta-band CMC and motor evoked potentials (MEPs) with transcranial magnetic stimulation.Results: No significant changes in the means of beta-band CMC, Force CV, and MEPs were observed before and after NMES conditions. Changes in beta-band CMC were correlated to a) changes in Force CV immediately, at 10 min, and at 20 min after β-NMES (all cases, p < 0.05) and b) changes in MEPs immediately after β-NMES (p = 0.01). No correlations were found after f-NMES.Conclusions: Our results suggest that the sensory input via NMES was inadequate to change the beta-band CMC, corticospinal excitability, and voluntary motor output. Whereas, the β-NMES affects the relationship between changes in beta-band CMC, Force CV, and MEPs. These findings may provide the information to develop NMES parameters for neurorehabilitation in patients with motor dysfunction.


2014 ◽  
Vol 92 (10) ◽  
pp. 821-825
Author(s):  
Alyssa R. Hindle ◽  
Jenny W.H. Lou ◽  
David F. Collins

The afferent volley generated by neuromuscular electrical stimulation (NMES) influences corticospinal (CS) excitability and frequent NMES sessions can strengthen CS pathways, resulting in long-term improvements in function. This afferent volley can be altered by manipulating NMES parameters. Presently, we manipulated one such parameter, pulse duration, during NMES over the common peroneal nerve and assessed the influence on H-reflexes and CS excitability. We hypothesized that compared with shorter pulse durations, longer pulses would (i) shift the H-reflex recruitment curve to the left, relative to the M-wave curve; and (ii) increase CS excitability more. Using 3 pulse durations (50, 200, 1000 μs), M-wave and H-reflex recruitment curves were collected and, in separate experiments, CS excitability was assessed by comparing motor evoked potentials elicited before and after 30 min of NMES. Despite finding a leftward shift in the H-reflex recruitment curve when using the 1000 μs pulse duration, consistent with a larger afferent volley for a given efferent volley, the increases in CS excitability were not influenced by pulse duration. Hence, although manipulating pulse duration can alter the relative recruitment of afferents and efferents in the common peroneal nerve, under the present experimental conditions it is ineffective for maximizing CS excitability for rehabilitation.


2010 ◽  
Vol 121 (7) ◽  
pp. e33
Author(s):  
Mutsumi Sugaya ◽  
Mitsuhiko Kodama ◽  
Koji Aono ◽  
Hiroshi Tanaka ◽  
Takashi Kasahara ◽  
...  

2009 ◽  
Vol 24 (2) ◽  
pp. 168-177 ◽  
Author(s):  
Dirk G. Everaert ◽  
Aiko K. Thompson ◽  
Su Ling Chong ◽  
Richard B. Stein

Background. Long-term use of a foot-drop stimulator applying functional electrical stimulation (FES) to the common peroneal nerve improves walking performance even when the stimulator is off. This “therapeutic” effect might result from neuroplastic changes. Objective. To determine the effect of long-term use of a foot-drop stimulator on residual corticospinal connections in people with central nervous system disorders. Methods. Ten people with nonprogressive disorders (eg, stroke) and 26 with progressive disorders (eg, multiple sclerosis) used a foot-drop stimulator for 3 to 12 months while walking in the community. Walking performance and electrophysiological variables were measured before and after FES use. From the surface electromyogram of the tibialis anterior muscle, we measured the following: (1) motor-evoked potential (MEP) from transcranial magnetic stimulation over the motor cortex, (2) maximum voluntary contraction (MVC), and (3) maximum motor wave (Mmax) from stimulating the common peroneal nerve. Results. After using FES, MEP and MVC increased significantly by comparable amounts, 50% and 48%, respectively, in the nonprogressive group and 27% and 17% in the progressive group; the changes were positively correlated ( R2 = .35; P < .001). Walking speed increased with the stimulator off (therapeutic effect) by 24% ( P = .008) and 7% ( P = .014) in the nonprogressive and progressive groups, respectively. The changes in Mmax were small and not correlated with changes in MEP. Conclusions. The large increases in MVC and MEP suggest that regular use of a foot-drop stimulator strengthens activation of motor cortical areas and their residual descending connections, which may explain the therapeutic effect on walking speed.


2017 ◽  
Vol 118 (4) ◽  
pp. 2171-2180 ◽  
Author(s):  
M. A. Urbin ◽  
Recep A. Ozdemir ◽  
Toshiki Tazoe ◽  
Monica A. Perez

Recovery of lower-limb function after spinal cord injury (SCI) likely depends on transmission in the corticospinal pathway. Here, we examined whether paired corticospinal-motoneuronal stimulation (PCMS) changes transmission at spinal synapses of lower-limb motoneurons in humans with chronic incomplete SCI and aged-matched controls. We used 200 pairs of stimuli where corticospinal volleys evoked by transcranial magnetic stimulation (TMS) over the leg representation of the motor cortex were timed to arrive at corticospinal-motoneuronal synapses of the tibialis anterior (TA) muscle 2 ms before antidromic potentials evoked in motoneurons by electrical stimulation of the common peroneal nerve (PCMS+) or when antidromic potentials arrived 15 or 28 ms before corticospinal volleys (PCMS−) on separate days. Motor evoked potentials (MEPs) elicited by TMS and electrical stimulation were measured in the TA muscle before and after each stimulation protocol. After PCMS+, the size of MEPs elicited by TMS and electrical stimulation increased for up to 30 min in control and SCI participants. Notably, this was accompanied by increases in TA electromyographic activity and ankle dorsiflexion force in both groups, suggesting that this plasticity has functional implications. After PCMS−, MEPs elicited by TMS and electrical stimulation were suppressed if afferent input from the common peroneal nerve reduced TA MEP size during paired stimulation in both groups. In conclusion, PCMS elicits spike-timing-dependent changes at spinal synapses of lower-limb motoneurons in humans and has potential to improve lower-limb motor output following SCI. NEW & NOTEWORTHY Approaches that aim to enhance corticospinal transmission to lower-limb muscles following spinal cord injury (SCI) are needed. We demonstrate that paired corticomotoneuronal stimulation (PCMS) can enhance plasticity at spinal synapses of lower-limb motoneurons in humans with and without SCI. We propose that PCMS has potential for improving motor output in leg muscles in individuals with damage to the corticospinal tract.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Jeong-Hyun Park ◽  
Jinseo Yang ◽  
Kwang-Rak Park ◽  
Tae Woo Kim ◽  
Taeyeong Kim ◽  
...  

The most frequent mononeuropathy in the lower extremity has been reported as the common peroneal nerve entrapment neuropathy (CPNe) around the head and neck of the fibula, although the mechanism of the neuropathy in this area cannot be fully explained. Therefore, the aim of this cadaveric study was to evaluate the relationship between morphologic variations of the distal biceps femoris muscle (BFM) and the course of the common peroneal nerve (CPN) and to investigate the incidence and morphological characteristics of anatomical variations in the BFM associated with CPNe. The popliteal region and the thigh were dissected in 115 formalin-fixed lower limbs. We evaluated consensus for (1) normal anatomy of the distal BFM, (2) anatomic variations of this muscle, and (3) the relationship of the muscle to the CPN. Measurements of the distal extents of the short and long heads of the BFM from insertion (fibular head) were performed. Two anatomic patterns were seen. First, in 93 knees (80.8%), the CPN ran obliquely along the lateral side of the BFM and then superficial to the lateral head of the gastrocnemius muscle. Second, in 22 cases (19.2%), the CPN coursed within a tunnel between the biceps femoris and lateral head of the gastrocnemius muscle (LGCM). There was a positive correlation between the distal extents of the short heads of the biceps femoris muscle (SHBFM) and the presence of the tunnel. The “popliteal intermuscular tunnel” in which the CPN travels can be produced between the more distal extension variant of the SHBFM and the LGCM. This anatomical variation of BFM may have a clinical significance as an entrapment area of the CPN in the patients in which the mechanism of CPNe around the fibula head and neck is not understood.


2009 ◽  
Vol 24 (2) ◽  
pp. 67-73 ◽  
Author(s):  
R Balasubramaniam ◽  
R Rai ◽  
D C Berridge ◽  
D J A Scott ◽  
R W Soames

Objectives The variable anatomy of the short saphenous vein (SSV) and the potential failure to identify the saphenopopliteal junction (SPJ) contribute to an increased risk of damage to the common peroneal nerve (CPN) during surgical exploration. The aim of the present study was to determine the variation of the SPJ, its relationship to the CPN, and the relationship of both SPJ and CPN to defined anatomical landmarks. Methods Measurements of the distance between the SPJ and CPN, and the defined anatomical landmarks (fibula head, lateral joint space, lateral femoral epicondyle), were undertaken on 30 cadaveric limbs following careful dissection of the popliteal fossa. Results The level of SPJ termination was classified as low (below), normal (within 100 mm above) and high (more than 100 mm above), the lateral femoral epicondyle. Of the 30 limbs dissected, 70% of SPJs were normal, 23% low and 7% high. Direct measurement from the SPJ to anatomical landmarks showed a higher interquartile range (IQR) in low compared with normal terminations; however, the vertical distance from the SPJ to the fibula head showed an increase in IQR from low to normal terminations (7.1–14.2). The mean distances between the SPJ and CPN in low and normal terminations were 23.3 and 16.7 mm, respectively. Comparison of the IQR showed values very similar to low terminations having a slightly higher IQR compared with normal terminations (7.15–6.0). Conclusion Significant anatomic variation was observed in the termination of the SSV, with 67% located within 66 mm above the lateral femoral epicondyle. The risk of damaging the CPN during saphenopopliteal ligation may be higher for SPJs located above the lateral femoral epicondyle because of the proximity of the two structures and variability of SPJ.


Sign in / Sign up

Export Citation Format

Share Document