scholarly journals Parallel evolution of storage roots in morning glories (Convolvulaceae)

2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Lauren A. Eserman ◽  
Robert L. Jarret ◽  
James H. Leebens-Mack
2017 ◽  
Vol 43 (9) ◽  
pp. 1290
Author(s):  
Chang-Zhe DENG ◽  
Hui YAO ◽  
Fei-Fei AN ◽  
Kai-Mian LI ◽  
Song-Bi CHEN

2021 ◽  
Vol 22 (13) ◽  
pp. 6641
Author(s):  
Chen Li ◽  
Meng Kou ◽  
Mohamed Hamed Arisha ◽  
Wei Tang ◽  
Meng Ma ◽  
...  

The saccharification of sweetpotato storage roots is a common phenomenon in the cooking process, which determines the edible quality of table use sweetpotato. In the present study, two high saccharified sweetpotato cultivars (Y25, Z13) and one low saccharified cultivar (X27) in two growth periods (S1, S2) were selected as materials to reveal the molecular mechanism of sweetpotato saccharification treated at high temperature by transcriptome sequencing and non-targeted metabolome determination. The results showed that the comprehensive taste score, sweetness, maltose content and starch change of X27 after steaming were significantly lower than those of Y25 and Z13. Through transcriptome sequencing analysis, 1918 and 1520 differentially expressed genes were obtained in the two periods of S1 and S2, respectively. Some saccharification-related transcription factors including MYB families, WRKY families, bHLH families and inhibitors were screened. Metabolic analysis showed that 162 differentially abundant metabolites related to carbohydrate metabolism were significantly enriched in starch and sucrose capitalization pathways. The correlation analysis between transcriptome and metabolome confirmed that the starch and sucrose metabolic pathways were significantly co-annotated, indicating that it is a vitally important metabolic pathway in the process of sweetpotato saccharification. The data obtained in this study can provide valuable resources for follow-up research on sweetpotato saccharification and will provide new insights and theoretical basis for table use sweetpotato breeding in the future.


2021 ◽  
Vol 10 (1) ◽  
pp. 20
Author(s):  
Walter Tiberti ◽  
Dajana Cassioli ◽  
Antinisca Di Marco ◽  
Luigi Pomante ◽  
Marco Santic

Advances in technology call for a parallel evolution in the software. New techniques are needed to support this dynamism, to track and guide its evolution process. This applies especially in the field of embedded systems, and certainly in Wireless Sensor Networks (WSNs), where hardware platforms and software environments change very quickly. Commonly, operating systems play a key role in the development process of any application. The most used operating system in WSNs is TinyOS, currently at its TinyOS 2.1.2 version. The evolution from TinyOS 1.x and TinyOS 2.x made the applications developed on TinyOS 1.x obsolete. In other words, these applications are not compatible out-of-the-box with TinyOS 2.x and require a porting action. In this paper, we discuss on the porting of embedded system (i.e., Wireless Sensor Networks) applications in response to operating systems’ evolution. In particular, using a model-based approach, we report the porting we did of Agilla, a Mobile-Agent Middleware (MAMW) for WSNs, on TinyOS 2.x, which we refer to as Agilla 2. We also provide a comparative analysis about the characteristics of Agilla 2 versus Agilla. The proposed Agilla 2 is compatible with TinyOS 2.x, has full capabilities and provides new features, as shown by the maintainability and performance measurement presented in this paper. An additional valuable result is the architectural modeling of Agilla and Agilla 2, missing before, which extends its documentation and improves its maintainability.


Plant Methods ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Michael Gomez Selvaraj ◽  
Maria Elker Montoya-P ◽  
John Atanbori ◽  
Andrew P. French ◽  
Tony Pridmore

Abstract Background Root and tuber crops are becoming more important for their high source of carbohydrates, next to cereals. Despite their commercial impact, there are significant knowledge gaps about the environmental and inherent regulation of storage root (SR) differentiation, due in part to the innate problems of studying storage roots and the lack of a suitable model system for monitoring storage root growth. The research presented here aimed to develop a reliable, low-cost effective system that enables the study of the factors influencing cassava storage root initiation and development. Results We explored simple, low-cost systems for the study of storage root biology. An aeroponics system described here is ideal for real-time monitoring of storage root development (SRD), and this was further validated using hormone studies. Our aeroponics-based auxin studies revealed that storage root initiation and development are adaptive responses, which are significantly enhanced by the exogenous auxin supply. Field and histological experiments were also conducted to confirm the auxin effect found in the aeroponics system. We also developed a simple digital imaging platform to quantify storage root growth and development traits. Correlation analysis confirmed that image-based estimation can be a surrogate for manual root phenotyping for several key traits. Conclusions The aeroponic system developed from this study is an effective tool for examining the root architecture of cassava during early SRD. The aeroponic system also provided novel insights into storage root formation by activating the auxin-dependent proliferation of secondary xylem parenchyma cells to induce the initial root thickening and bulking. The developed system can be of direct benefit to molecular biologists, breeders, and physiologists, allowing them to screen germplasm for root traits that correlate with improved economic traits.


Sign in / Sign up

Export Citation Format

Share Document