scholarly journals Physiological and biochemical responses of strawberry crown and leaf tissues to freezing stress

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Elnaz Zareei ◽  
Farhad Karami ◽  
Mansour Gholami ◽  
Ahmad Ershadi ◽  
Saber Avestan ◽  
...  

Abstract Background In northern Iran and other cold regions, winter freezing injury and resultant yield instability are major limitations to strawberry production. However, there is scarcity of information on the physiological and biochemical responses of strawberry cultivars to freezing stress. This study aimed to investigate the physiological and biochemical responses of strawberry cultivars (Tennessee Beauty, Blakemore, Kurdistan, Queen Elisa, Chandler, Krasnyy Bereg, and Yalova) to different freezing temperature treatments (− 5, − 10, − 15, − 20, and − 25 °C) under controlled conditions. Results All measured physiological and biochemical features were significantly affected by the interaction effect between low temperatures and cultivars. Tennessee Beauty showed the highest RWC at − 25 °C. The highest Fv/Fm was observed in Queen Elisa. Krasnyy Bereg had the least freezing injury (FI) in crown and leaf, while Yalova and Chandler showed the highest crown and leaf FI, respectively. At − 20 to − 25 °C, the highest carbohydrates contents of crown and leaf were noted in Blakemore and Krasnyy Bereg cultivars, respectively. The Yalova showed the highest protein content in both crown and leaf tissues at − 25 °C. The Tennessee Beauty and Blackmore cultivars showed the highest proline in crowns and leaves at − 15 °C, respectively. The highest ThioBarbituric Acid Reactive Substances (TBARS) contents in the crown and leaf were observed in Kurdistan and Queen Elisa, respectively. Queen Elisa and Krasnyy Bereg cultivars showed SOD and POD peaks in the crown at − 15 °C, respectively. Conclusion Freezing stress was characterized by decreased Fv/Fm and RWC, and increased FI, TBARS, total carbohydrates, total proteins, proline content, and antioxidant enzyme activity. The extent of changes in above mentioned traits was cultivar dependent. FI and TBARS were the best traits among destructive parameters for evaluating freezing tolerance. Moreover, maximum quantum yield of PSII (Fv/Fm index), as non-destructive parameters, showed a significant efficiency in rapid assessment for screening of freezing tolerant strawberry cultivars. The cultivars Krasnyy Bereg, Queen Elisa, and Kurdistan were the most tolerant cultivars to freezing stress. These cultivars can be used as parents in breeding programs to develop new freezing tolerant cultivars.

2008 ◽  
Vol 65 (2) ◽  
pp. 204-204 ◽  
Author(s):  
Alla Shvaleva ◽  
Filipe Costa e Silva ◽  
Paula Scotti ◽  
Mouhssin Oufir ◽  
Jean-François Hausman ◽  
...  

2015 ◽  
Vol 62 (4) ◽  
pp. 551-559
Author(s):  
S. Asadi-Sanam ◽  
H. Pirdashti ◽  
A. Hashempour ◽  
M. Zavareh ◽  
G. A. Nematzadeh ◽  
...  

2015 ◽  
Vol 62 (4) ◽  
pp. 515-523 ◽  
Author(s):  
S. Asadi-Sanam ◽  
H. Pirdashti ◽  
A. Hashempour ◽  
M. Zavareh ◽  
G. A. Nematzadeh ◽  
...  

2018 ◽  
Vol 19 (1&2) ◽  
pp. 217-222
Author(s):  
Manjunath J. Shetty ◽  
◽  
P.R. Geethalekshmi ◽  
C. Mini ◽  
Vijayaraghava Kumar ◽  
...  

2018 ◽  
Vol 5 (03) ◽  
Author(s):  
ARADHNA KUMARI ◽  
IM KHAN ◽  
ANIL KUMAR SINGH ◽  
SANTOSH KUMAR SINGH

Poplar clone Kranti was selected to assess the morphological, physiological and biochemical responses under drought at different levels of water stress, as it is a common clone used to be grown in Uttarakhand for making paper and plywood. The cuttings of Populus deltoides L. (clone Kranti) were exposed to four different watering regimes (100, 75, 50 and 25% of the field capacity) and changes in physiological and biochemical parameters related with drought tolerance were recorded. Alterations in physiological (i.e. decrease in relative water content) and biochemical parameters (i.e. increase in proline and soluble sugar content and build-up of malondialdehyde by-products) occurred in all the three levels of water stress, although drought represented the major determinant. Drought treatments (75%, 50% and 25% FC) decreased plant height, radial stem diameter, harvest index, total biomass content and RWC in all the three watering regimes compared to control (100% FC). Biochemical parameters like proline, soluble sugar and MDA content increased with severity and duration of stress, which helped plants to survive under severe stress. It was analyzed that for better wood yield poplar seedlings should avail either optimum amount of water (amount nearly equal to field capacity of soil) or maximum withdrawal up to 75% of field capacity up to seedling establishment period (60 days). Furthermore, this study manifested that acclimation to drought stress is related with the rapidity, severity, and duration of the drought event of the poplar species.


Sign in / Sign up

Export Citation Format

Share Document