scholarly journals Characterization of an N-terminal Nav1.5 channel variant – a potential risk factor for arrhythmias and sudden death?

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Stefanie Scheiper-Welling ◽  
Paolo Zuccolini ◽  
Oliver Rauh ◽  
Britt-Maria Beckmann ◽  
Christof Geisen ◽  
...  

Abstract Background Alterations in the SCN5A gene encoding the cardiac sodium channel Nav1.5 have been linked to a number of arrhythmia syndromes and diseases including long-QT syndrome (LQTS), Brugada syndrome (BrS) and dilative cardiomyopathy (DCM), which may predispose to fatal arrhythmias and sudden death. We identified the heterozygous variant c.316A > G, p.(Ser106Gly) in a 35-year-old patient with survived cardiac arrest. In the present study, we aimed to investigate the functional impact of the variant to clarify the medical relevance. Methods Mutant as well as wild type GFP tagged Nav1.5 channels were expressed in HEK293 cells. We performed functional characterization experiments using patch-clamp technique. Results Electrophysiological measurements indicated, that the detected missense variant alters Nav1.5 channel functionality leading to a gain-of-function effect. Cells expressing S106G channels show an increase in Nav1.5 current over the entire voltage window. Conclusion The results support the assumption that the detected sequence aberration alters Nav1.5 channel function and may predispose to cardiac arrhythmias and sudden cardiac death.

Gene ◽  
2006 ◽  
Vol 376 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Sandra Morales-Arrieta ◽  
Maria Elena Rodríguez ◽  
Lorenzo Segovia ◽  
Agustín López-Munguía ◽  
Clarita Olvera-Carranza

1998 ◽  
Vol 44 (1) ◽  
pp. 91-94
Author(s):  
G Scott Jenkins ◽  
Mark S Chandler ◽  
Pamela S Fink

The putative 4.5S RNA of Haemophilus influenzae was identified in the genome by computer analysis, amplified by the polymerase chain reaction, and cloned. We have determined that this putative 4.5S RNA will complement an Escherichia coli strain conditionally defective in 4.5S RNA production. The predicted secondary structures of the molecules were quite similar, but Northern analysis showed that the H. influenzae RNA was slightly larger than the E. coli RNA. The H. influenzae gene encoding this RNA is the functional homolog of the ffs gene in E. coli. Key words: ffs gene, complementation studies, small RNA, prokaryotic genetics.


Blood ◽  
2002 ◽  
Vol 100 (10) ◽  
pp. 3626-3632 ◽  
Author(s):  
Barbara Plaimauer ◽  
Klaus Zimmermann ◽  
Dirk Völkel ◽  
Gerhard Antoine ◽  
Randolf Kerschbaumer ◽  
...  

Deficient von Willebrand factor (VWF) degradation has been associated with thrombotic thrombocytopenic purpura (TTP). In hereditary TTP, the specific VWF-cleaving protease (VWF-cp) is absent or functionally defective, whereas in the nonfamilial, acquired form of TTP, an autoantibody inhibiting VWF-cp activity is found transiently in most patients. The gene encoding for VWF-cp has recently been identified as a member of the metalloprotease family and designatedADAMTS13, but the functional activity of the ADAMTS13 gene product has not been verified. To establish the functional activity of recombinant VWF-cp, we cloned the complete cDNA sequence in a eukaryotic expression vector and transiently expressed the encoded recombinant ADAMTS13 in HEK 293 cells. The expressed protein degraded VWF multimers and proteolytically cleaved VWF to the same fragments as those generated by plasma VWF-cp. Furthermore, recombinant ADAMTS13-mediated degradation of VWF multimers was entirely inhibited in the presence of plasma from a patient with acquired TTP. These data show that ADAMTS13 is responsible for the physiologic proteolytic degradation of VWF multimers.


1992 ◽  
Vol 20 (8) ◽  
pp. 1983-1990 ◽  
Author(s):  
Laurence Falquerho ◽  
Laurent Paquereau ◽  
Marie José Vilarem ◽  
Simon Galas ◽  
Gilles Patey ◽  
...  

Gene ◽  
2002 ◽  
Vol 295 (1) ◽  
pp. 109-116 ◽  
Author(s):  
Shu-Chi Hsu ◽  
Ford Kirschenbaum ◽  
Judy Miller ◽  
Barbara Cordell ◽  
Justin V. McCarthy

Sign in / Sign up

Export Citation Format

Share Document