scholarly journals Possible role of intravenous administration of mesenchymal stem cells to alleviate interstitial cystitis/bladder pain syndrome in a Toll-like receptor-7 agonist-induced experimental animal model in rat

BMC Urology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hidetoshi Tabata ◽  
Masanori Sasaki ◽  
Yuko Kataoka-Sasaki ◽  
Nobuo Shinkai ◽  
Koji Ichihara ◽  
...  

Abstract Background Interstitial cystitis/bladder pain syndrome (IC/BPS) categorized with and without Hunner lesions is a condition that displays chronic pelvic pain related to the bladder with no efficacious treatment options. There are strong associations suggested between Hunner-type IC and autoimmune diseases. Recently, we established an animal model of Hunner-type IC using a Toll-like receptor-7 (TLR7) agonist. Intravenous infusion of mesenchymal stem cells (MSCs) can be used to treat injury via multimodal and orchestrated therapeutic mechanisms including anti-inflammatory effects. Here, we investigated whether infused MSCs elicit therapeutic efficacy associated with the TLR7-related anti-inflammatory pathway in our Hunner-type IC model. Methods Voiding behaviors were monitored 24 h prior to the Loxoribine (LX), which is a TLR7 agonist instillation in order to establish a Hunner-type IC model (from − 24 to 0 h) in female Sprague–Dawley rats. LX was instilled transurethrally into the bladder. At 0 h, the initial freezing behavior test confirmed that no freezing behavior was observed in any of the animals. The LX-instilled animals were randomized. Randomized LX-instilled rats were intravenously infused with MSCs or with vehicle through the right external jugular vein. Sampling tissue for green fluorescent protein (GFP)-positive MSCs were carried out at 48 h. Second voiding behavior tests were monitored from 72 to 96 h. After the final evaluation of the freezing behavior test at 96 h after LX instillation (72 h after MSC or vehicle infusion), histological evaluation with H&E staining and quantitative real-time polymerase chain reaction (RT-PCR) to analyze the mRNA expression levels of inflammatory cytokines were performed. Results Freezing behavior was reduced in the MSC group, and voiding behavior in the MSC group did not deteriorate. Hematoxylin–eosin staining showed that mucosal edema, leukocyte infiltration, and hemorrhage were suppressed in the MSC group. The relative expression of interferon-β mRNA in the bladder of the MSC group was inhibited. Numerous GFP-positive MSCs were distributed mainly in the submucosal and mucosal layers of the inflammatory bladder wall. Conclusion Intravenous infusion of MSCs may have therapeutic efficacy in a LX-instilled Hunner-type IC rat model via a TLR7-related anti-inflammatory pathway.

2020 ◽  
Vol 24 (3) ◽  
pp. 211-221 ◽  
Author(s):  
Chih-Chieh Lin ◽  
Yun-Ching Huang ◽  
Wei-Chia Lee ◽  
Yao-Chi Chuang

Interstitial cystitis/bladder pain syndrome (IC/BPS), which is characterized by bladder pain and irritative voiding symptoms, is a frustrating disease without effective treatment. The cause is still largely not understood, although urothelium ischemia/hypoxia, apoptosis, denudation, and infiltration of inflammatory cells are common histopathological findings. The current uncertainty regarding the etiology and pathology of IC/BPS has a negative impact on its timely and successful treatment; therefore, the development of new treatment modalities is urgently needed. Herein, we present advances in our knowledge on this topic and review the potential application of regenerative medicine for the treatment of IC/BPS. This article provides information on the basic characteristics and clinical evidence of stem cells, platelet-rich plasma (PRP), and low-energy shock waves (LESWs) based on a literature review with a search strategy for articles related to IC/BPS, stem cells, PRP, and LESW published in MEDLINE and PubMed. Stem cells, PRP, and LESW, which modulate inflammatory processes and promote tissue repair, have been proven to improve bladder regeneration, relieve bladder pain, inhibit bladder inflammation, and increase bladder capacity in some preclinical studies. However, clinical studies are still in their infancy. Based on the mechanisms of action of stem cells, PRP, and LESW documented in many preclinical studies, the potential applications of regenerative medicine for the treatment of IC/BPS is an emerging frontier of interest. However, solid evidence from clinical studies remains to be obtained.


2020 ◽  
Vol 9 (3) ◽  
pp. 766
Author(s):  
Ahmed Abdal Dayem ◽  
Kyeongseok Kim ◽  
Soo Bin Lee ◽  
Aram Kim ◽  
Ssang-Goo Cho

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a multifactorial, chronic disease without definite etiology characterized by bladder-related pelvic pain. IC/BPS is associated with pain that negatively affects the quality of life. There are various therapeutic approaches against IC/BPS. However, no efficient therapeutic agent against IC/BPS has been discovered yet. Urothelium dysfunction is one of the key factors of IC/BPS-related pathogenicity. Stem cells, including adult stem cells (ASCs) and pluripotent stem cells (PSCs), such as embryonic stem cells (ESCs) and induced PSCs (iPSCs), possess the abilities of self-renewal, proliferation, and differentiation into various cell types, including urothelial and other bladder cells. Therefore, stem cells are considered robust candidates for bladder regeneration. This review provides a brief overview of the etiology, pathophysiology, diagnosis, and treatment of IC/BPS as well as a summary of ASCs and PSCs. The potential of ASCs and PSCs in bladder regeneration via differentiation into bladder cells or direct transplantation into the bladder and the possible applications in IC/BPS therapy are described in detail. A better understanding of current studies on stem cells and bladder regeneration will allow further improvement in the approaches of stem cell applications for highly efficient IC/BPS therapy.


Sign in / Sign up

Export Citation Format

Share Document