scholarly journals Pigs immunized with a novel E2 subunit vaccine are protected from subgenotype heterologous classical swine fever virus challenge

2016 ◽  
Vol 12 (1) ◽  
Author(s):  
Rachel Madera ◽  
Wenjie Gong ◽  
Lihua Wang ◽  
Yulia Burakova ◽  
Karen Lleellish ◽  
...  
2020 ◽  
Author(s):  
Huiling Xu ◽  
Yanli Wang ◽  
Guangwei Han ◽  
Weihuan Fang ◽  
fang he

Abstract Background: Outbreaks of Classical swine fever virus (CSFV) cause significant economic losses in the swine industry. Vaccination is the major method to prevent and control the disease. As live attenuated vaccines fail to elicit differentiable immunity between infected and vaccinated animals, subunit vaccine was considered as an alternative candidate to prevent and eradicate CSFV. Subunit vaccines present advantages in DIVA immunogenicity and safety. The technology was limited due to the low yield and the high cost with multiple and large doses. The native E2 signal peptide has not been well defined before. Here, the aim of this study is to develop a cost-effective and efficacious E2 vaccine candidate against CSFV with signal peptide and E2 sequence selection. Results: A novel CSFV E2 sequence (E2ZJ) was identified from an epidemic strain of Zhejiang for outstanding secretion in baculovirus and enhanced immunogenicity. E2 secretion induced with the selected signal peptide, SPZJ (SP23), increase at least 50% as compared to any other signal peptides tested. Besides, unique antigenic features were identified in E2ZJ. E2ZJ elicited CSFV antibodies at the earlier stage than other E2 types tested in mice. Moreover, higher level of neutralization antibodies against both genotypes 1 and 2 CSFV with E2ZJ was detected than other E2s with the same dosage. Further, in piglets, E2ZJ successfully elicited neutralizing immunity. A single dose of 5 μg of E2ZJ was sufficient to induce protective antibodies against CSFV in piglets and provided 100% protection against lethal virus challenge. Conclusions: Our studies provide evidence that E2ZJ guided by a novel E2 signal peptide (SPZJ) was efficiently secreted and presented significantly improved immunogenicity than conventional E2 vaccines. Moreover, a single dose of 5 μg E2ZJ is efficacious against CSFV in piglets. Keywords: Classical swine fever virus; novel signal peptide; SPZJ-E2ZJ; subunit vaccine; protective immunity


2020 ◽  
Author(s):  
Huiling Xu ◽  
Yanli Wang ◽  
Guangwei Han ◽  
Weihuan Fang ◽  
fang he

Abstract Background: Outbreaks of Classical swine fever virus (CSFV) cause significant economic losses in the swine industry. Vaccination is the major method to prevent and control the disease. As live attenuated vaccines fail to elicit differentiable immunity between infected and vaccinated animals, subunit vaccine was considered as an alternative candidate to prevent and eradicate CSFV. Subunit vaccines present advantages in DIVA immunogenicity and safety. The technology was limited due to the low yield and the high cost with multiple and large doses. The native E2 signal peptide has not been well defined before. Here, the aim of this study is to develop a cost-effective and efficacious E2 vaccine candidate against CSFV with signal peptide and E2 sequence selection. Results: A novel CSFV E2 sequence (E2ZJ) was identified from an epidemic strain of Zhejiang for outstanding secretion in baculovirus and enhanced immunogenicity. E2 secretion induced with the selected signal peptide, SPZJ (SP23), increase at least 50% as compared to any other signal peptides tested. Besides, unique antigenic features were identified in E2ZJ. As indicated with immunized sera in IFA against CSFV infection, E2ZJ elicited CSFV antibodies at the earlier stage than other E2 types tested in mice. Moreover, higher level of neutralizing and CSFV antibodies against CSFV with E2ZJ was detected than other E2s with the same dosage at 28 dpi. Further, E2ZJ successfully elicited neutralizing immunity in piglets. A single dose of 5 μg of E2ZJ was sufficient to induce protective antibodies against CSFV in piglets and provided 100% protection against lethal virus challenge. Conclusions: Our studies provide evidence that E2ZJ guided by a novel E2 signal peptide (SPZJ) was efficiently secreted and presented significantly improved immunogenicity than conventional E2 vaccines. Moreover, a single dose of 5 μg E2ZJ is efficacious against CSFV in piglets. Keywords: Classical swine fever virus; novel signal peptide; SPZJ-E2ZJ; subunit vaccine; protective immunity


Vaccines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 418
Author(s):  
Youngmin Park ◽  
Yeonsu Oh ◽  
Miaomiao Wang ◽  
Llilianne Ganges ◽  
José Alejandro Bohórquez ◽  
...  

The efficacy of a novel subunit vaccine candidate, based in the CSFV E2 glycoprotein produced in plants to prevent classical swine fever virus (CSFV) vertical transmission, was evaluated. A Nicotiana benthamiana tissue culture system was used to obtain a stable production of the E2-glycoprotein fused to the porcine Fc region of IgG. Ten pregnant sows were divided into three groups: Groups 1 and 2 (four sows each) were vaccinated with either 100 μg/dose or 300 μg/dose of the subunit vaccine at 64 days of pregnancy. Group 3 (two sows) was injected with PBS. Groups 1 and 2 were boosted with the same vaccine dose. At 10 days post second vaccination, the sows in Groups 2 and 3 were challenged with a highly virulent CSFV strain. The vaccinated sows remained clinically healthy and seroconverted rapidly, showing efficient neutralizing antibodies. The fetuses from vaccinated sows did not show gross lesions, and all analyzed tissue samples tested negative for CSFV replication. However, fetuses of non-vaccinated sows had high CSFV replication in tested tissue samples. The results suggested that in vaccinated sows, the plant produced E2 marker vaccine induced the protective immunogenicity at challenge, leading to protection from vertical transmission to fetuses.


1999 ◽  
Vol 66 (2) ◽  
pp. 101-114 ◽  
Author(s):  
A Bouma ◽  
A.J de Smit ◽  
E.P de Kluijver ◽  
C Terpstra ◽  
R.J.M Moormann

Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 167
Author(s):  
Yusmel Sordo-Puga ◽  
Marisela Suárez-Pedroso ◽  
Paula Naranjo-Valdéz ◽  
Danny Pérez-Pérez ◽  
Elaine Santana-Rodríguez ◽  
...  

Live attenuated C-strain classical swine fever vaccines provide early onset protection. These vaccines confer effective protection against the disease at 5–7 days post-vaccination. It was previously reported that intramuscular administration of the Porvac® vaccine protects against highly virulent classical swine fever virus (CSFV) “Margarita” strain as early as seven days post-vaccination. In order to identify how rapidly protection against CSFV is conferred after a single dose of the Porvac® subunit vaccine E2-CD154, 15 swine, vaccinated with a single dose of Porvac®, were challenged intranasally at five, three, and one day post-vaccination with 2 × 103 LD50 of the highly pathogenic Cuban “Margarita” strain of the classical swine fever virus. Another five animals were the negative control of the experiment. The results provided clinical and virological data confirming protection at five days post-vaccination. Classical swine fever (CSF)-specific IFNγ T cell responses were detected in vaccinated animals but not detected in unvaccinated control animals. These results provided the first data that a subunit protein vaccine demonstrates clinical and viral protection at five days post-vaccination, as modified live vaccines.


AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Elianet Lorenzo ◽  
Lidice Méndez ◽  
Elsa Rodríguez ◽  
Nemecio Gonzalez ◽  
Gleysin Cabrera ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document