scholarly journals Haemagglutinin displayed on the surface of Lactococcus lactis confers broad cross-clade protection against different H5N1 viruses in chickens

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Han Lei ◽  
Tong Gao ◽  
Qianhong Cen ◽  
Xiaojue Peng

Abstract Background The highly pathogenic avian influenza (HPAI) H5N1 virus poses a potential threat to the poultry industry. The currently available avian influenza H5N1 vaccines for poultry are clade-specific. Therefore, an effective vaccine for preventing and controlling H5N1 viruses belonging to different clades needs to be developed. Results Recombinant L. lactis/pNZ8148-Spax-HA was generated, and the influenza virus haemagglutinin (HA) protein of A/Vietnam/1203/2004 (H5N1) was displayed on the surface of Lactococcus lactis (L. lactis). Spax was used as an anchor protein. Chickens vaccinated orally with unadjuvanted L. lactis/pNZ8148-Spax-HA could produce significant humoral and mucosal responses and neutralizing activities against H5N1 viruses belonging to different clades. Importantly, unadjuvanted L. lactis/pNZ8148-Spax-HA conferred cross-clade protection against lethal challenge with different H5N1 viruses in the chicken model. Conclusion This study provides insights into the cross-clade protection conferred by unadjuvanted L. lactis/pNZ8148-Spax-HA, and the results might help the establishment of a promising platform for the development of a safe and effective H5N1 cross-clade vaccine for poultry.

2020 ◽  
Author(s):  
Han Lei ◽  
Tong Gao ◽  
Qianhong Cen ◽  
Xiaojue Peng

Abstract BackgroundThe highly pathogenic avian influenza (HPAI) H5N1 virus poses a potential threat to the poultry industry. The currently available avian influenza H5N1 vaccines for poultry are clade-specific. Therefore, an effective vaccine for preventing and controlling H5N1 viruses belonging to different clades needs to be developed.ResultsRecombinant L. lactis/pNZ8148-Spax-HA was generated, and the influenza virus haemagglutinin (HA) protein of A/Vietnam/1203/2004 (H5N1) was displayed on the surface of Lactococcus lactis (L. lactis). Spax was used as an anchor protein. Chickens vaccinated orally with unadjuvanted L. lactis/pNZ8148-Spax-HA could produce significant humoral and mucosal responses and neutralizing activities against H5N1 viruses belonging to different clades. Importantly, unadjuvanted L. lactis/pNZ8148-Spax-HA conferred cross-clade protection against lethal challenge with different H5N1 viruses in the chicken model.ConclusionThis study provides insights into the cross-clade protection conferred by unadjuvanted L. lactis/pNZ8148-Spax-HA, and the results might help the establishment of a promising platform for the development of a safe and effective H5N1 cross-clade vaccine for poultry.


2020 ◽  
Author(s):  
Han Lei ◽  
Tong Gao ◽  
Qianhong Cen ◽  
Xiaojue Peng

Abstract Background The highly pathogenic avian influenza (HPAI) H5N1 virus poses a potential threat to the poultry industry. The currently available avian influenza H5N1 vaccines for poultry are clade-specific. Therefore, an effective vaccine for preventing and controlling H5N1 viruses belonging to different clades needs to be developed.Results Recombinant L. lactis/pNZ8148-Spax-HA was generated, and the influenza virus haemagglutinin (HA) protein of A/chicken/Henan/12/2004 was displayed on the surface of Lactococcus lactis (L. lactis). Spax was used as an anchor protein. Chickens vaccinated orally with unadjuvanted L. lactis/pNZ8148-Spax-HA could produce significant humoral and mucosal responses and neutralizing activities against H5N1 viruses belonging to different clades. Importantly, unadjuvanted L. lactis/pNZ8148-Spax-HA conferred cross-clade protection against lethal challenge with different H5N1 viruses in the chicken model.Conclusion This study provides insights into the cross-clade protection conferred by unadjuvanted L. lactis/pNZ8148-Spax-HA, and the results might help the establishment of a promising platform for the development of a safe and effective H5N1 cross-clade vaccine for poultry.


2020 ◽  
Author(s):  
Han Lei ◽  
Qianhong Cen ◽  
Tong Gao ◽  
Xiaojue Peng

Abstract Background Highly pathogenic avian influenza (HPAI) H5N1 virus has the potential threat to poultry industry. Current avian influenza H5N1 vaccines for poultry are clade-specific, Therefore, there is an urgent need to develop an effective vaccine for preventing and controlling H5N1 viruses from different clades. Results Recombinant L.lactis /pNZ8148-Spax-HA was generated which influenza virus hemagglutinin (HA) protein of A/chicken/Henan/12/2004 was displayed on the surface of Lactococcus lactis ( L.lactis ) and Spax was used an anchor protein. Chickens vaccinated orally with the unadjuvanted L.lactis /pNZ8148-Spax-HA could produce significant humoral and mucosal responses, as well as the neutralizing activities against different clades of H5N1 viruses. Importantly, the unadjuvanted L.lactis /pNZ8148-Spax-HA could conferred cross-clade protection against lethal challenge with different H5N1 viruses in the chicken model. Conclusion This study provides insight into the cross-clade protection conferred by the unadjuvanted L.lactis /pNZ8148-Spax-HA that may help establish a promising platform for the development of a safe and effective H5N1 cross-clade vaccine in poultry. Keywords: L.lactis /pNZ8148-Spax-HA, cross protection, H5N1 cross-clade vaccine.


2019 ◽  
Vol 42 (2) ◽  
pp. 189-194
Author(s):  
Furkan Alaraji ◽  
Hussam Muhsen ◽  
Abdullah O. Alhatami ◽  
Yahia Ismail Khudhair

Abstract For the first time in Iraq, we identified in March, 2018 the presence of a highly virulent avian influenza virus (AIV), H5N1 (Clade 2.3.2.1c), causing highly pathogenic avian influenza (HPAI) in poultry farms, Iraq,. The identification of the virus was done using a rapid serological test, a real time-qPCR, and glycoprotein gene sequencing. Using sequencing and phylogenetic analyses, the clade 2.3.2.1c virus was recorded to be clustered, with high similarity to Asian and West African AIV, HPAI H5N1 from Ivory Coast identified in 2015. According to our knowledge, there was no previous detection of the clade 2.3.2.1c made in Iraq. Our results provide evidence that high risk of HPAI H5 outbreaks might be present in Iraq, and this needs to lead to high quality surveillance targeting of wild and domestic birds for early diagnosis of HPAI. The current work provides feasible and accurate approaches for understanding the evolution of HPAI H5 virus in different countries around the world.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Olatunde Babatunde Akanbi ◽  
Victor Olusegun Taiwo

Commercial layer-type, pullet, cockerel, and broiler chicken flocks infected with highly pathogenic avian influenza (HPAI) H5N1 in Nigeria between 2006 and 2008 were investigated for morbidity, mortality, and pathology. Of the one hundred and fifty-three (153) farms confirmed with HPAI infection, one hundred and twenty-seven (127) were layer-type farms, nine (9) were pullet and broiler farms each, and eight (8) were cockerel rearing farms. This study revealed the morbidity and mortality of a total of 939,620 commercial layer chickens, 16,421 pullets, 3,109 cockerels, and 6,433 broilers. Mortality rates were 11.11% in commercial layers, 26.84% in pullets, 45.51% in cockerels, and 73.92% in broilers in a total of eighteen (18) states and the Federal Capital Territory, Abuja. A total of 316 carcasses were examined of which 248 were commercial layer, 25 were pullet, 14 were cockerel, and 29 were broiler. Main clinical and pathologic findings were observed in the nervous, circulatory, respiratory, integumentary, musculoskeletal, hemopoietic, gastrointestinal, and reproductive systems and, occasionally, lesions were generally nonspecific and multisystemic. Lesions occurred more frequently, severely, and in most of the carcasses examined, irrespective of chicken type.


2011 ◽  
Vol 139 (5) ◽  
pp. 647-657 ◽  
Author(s):  
E. M. ABDELWHAB ◽  
H. M. HAFEZ

SUMMARYEmergence of the highly pathogenic avian influenza (HPAI) H5N1 virus in Egypt in mid-February 2006 caused significant losses for the poultry industry and constituted a potential threat to public health. Since late 2007, there has been increasing evidence that stable lineages of H5N1 viruses are being established in chickens and humans in Egypt. The virus has been detected in wild, feral and zoo birds and recently was found in donkeys and pigs. Most of the outbreaks in poultry and humans occurred in the highly populated Nile delta. The temporal pattern of the virus has changed since 2009 with outbreaks now occurring in the warmer months of the year. Challenges to control of endemic disease in Egypt are discussed. For the foreseeable future, unless a global collaboration exists, HPAI H5N1 virus in Egypt will continue to compromise the poultry industry, endanger public health and pose a serious pandemic threat.


Sign in / Sign up

Export Citation Format

Share Document