scholarly journals A colorimetric test for the evaluation of the insecticide content of LLINs used on Bioko Island, Equatorial Guinea

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Harparkash Kaur ◽  
Elizabeth Louise Allan ◽  
Teunis A. Eggelte ◽  
Guillermo A. García ◽  
Feliciano Monti

Abstract Background Insecticide-treated nets and indoor residual spraying of insecticides are used as the vector control interventions in the fight against malaria. Measuring the actual amount of deposits of insecticides on bed nets and walls is essential for evaluating the quality and effectiveness of the intervention. A colorimetric “Test Kit” designed for use as a screening tool, able to detect the type II pyrethroids on fabrics and sprayed walls, was used for the first time to detect deltamethrin on long-lasting insecticidal nets (LLINs) deployed on Bioko Island, Equatorial Guinea. Methods LLINs were analysed using the colorimetric Test Kit performed in situ, which leads to the formation of an orange-red solution whose depth of colour indicates the amount of type II pyrethroid on the net. The kit results were validated by measuring the amount of extracted insecticide using high-performance liquid chromatography (HPLC) with diode array detection (DAD). Results Deltamethrin concentration was determined for 130 LLINs by HPLC–DAD. The deltamethrin concentration of these nets exhibited a significant decrease with the age of the net from 65 mg/m2 (< 12 months of use) to 31 mg/m2 (> 48 months; p < 0.001). Overall, 18% of the nets being used in households had < 15 mg/m2 of deltamethrin, thus falling into the “Fail” category as assessed by the colorimetric Test Kit. This was supported by determining the bio-efficacy of the nets using the WHO recommended cone bioassays. The Test Kit was field evaluated in situ and found to be rapid, accurate, and easy to use by people without laboratory training. The Test Kit was shown to have a reliable linear relationship between the depth of colour produced and deltamethrin concentration (R2 = 0.9135). Conclusion This study shows that this colorimetric test was a reliable method to assess the insecticidal content of LLINs under operational conditions. The Test Kit provides immediate results and offers a rapid, inexpensive, field-friendly alternative to the complicated and costly methods such as HPLC and WHO cone bioassays which also need specialist staff. Thus, enabling National Malaria Control Programmes to gain access to effective and affordable monitoring tools for use in situ.

2020 ◽  
Author(s):  
Harparkash Kaur ◽  
Elizabeth Louise Allan ◽  
Teunis A Eggelte ◽  
Guillermo A Garcia ◽  
Feliciano Monti

Abstract BackgroundInsecticide-treated nets and indoor residual spraying of insecticides are used as the major vector control interventions in the fight against malaria. Measuring the actual amount of deposits of insecticides on bed nets and walls is essential for evaluating the quality and effectiveness of the intervention. A colorimetric “Test Kit” designed for use as a screening tool, able to detect the type II pyrethroids on fabrics and sprayed walls, was used for the first time to detect deltamethrin on long-lasting insecticidal nets (LLINs) deployed on Bioko Island, Equatorial Guinea.MethodsLLINs were analysed using the colorimetric Test Kit performed in situ, which leads to the formation of an orange-red solution whose depth of colour indicates the amount of type II pyrethroid on the net. The kit results were validated by measuring the amount of extracted insecticide using high-performance liquid chromatography (HPLC) with diode array detection (DAD).ResultsDeltamethrin concentration was determined for 130 LLINs by HPLC-DAD. The deltamethrin concentration of these nets exhibited a significant decrease with the age from 65 mg/m2 (<12 months of use) to 31 mg/m2 (>48 months; p<0.001). Overall, 18% of the nets being used in households had <15 mg/m2 of deltamethrin, thus falling into the failed category as assessed by the colorimetric Test Kit. This was supported by the bioassay determined bio-efficacy of the nets with ≥80% mortality following the World Health Organization (WHO) minimal effectiveness criteria. The Test Kit was field evaluated in situ and found to be rapid, accurate, and easy to use by people without laboratory training. The Test Kit was shown to have a reliable linear relationship between depth of colour produced and deltamethrin concentration (R2 = 0.9135).ConclusionResults of this study show that this colorimetric test was a reliable method to assess the insecticidal content of LLINs under operational conditions. The Test Kit provides immediate results and offers a rapid, inexpensive, field-friendly alternative to the complicated and costly methods as HPLC and WHO cone bioassays which also need specialist staff. Thus, enabling National Malaria Programs to gain access to effective and affordable monitoring tools for use in situ.


2021 ◽  
Vol 6 (5) ◽  
pp. e005447
Author(s):  
Hillary M Topazian ◽  
Austin Gumbo ◽  
Katerina Brandt ◽  
Michael Kayange ◽  
Jennifer S Smith ◽  
...  

IntroductionMalawi’s malaria burden is primarily assessed via cross-sectional national household surveys. However, malaria is spatially and temporally heterogenous and no analyses have been performed at a subdistrict level throughout the course of a year. The WHO recommends mass distribution of long-lasting insecticide-treated bed nets (LLINs) every 3 years, but a national longitudinal evaluation has never been conducted in Malawi to determine LLIN effectiveness lifespans.MethodsUsing District Health Information Software 2 (DHIS2) health facility data, available from January 2018 to June 2020, we assessed malaria risk before and after a mass distribution campaign, stratifying by age group and comparing risk differences (RDs) by LLIN type or annual application of indoor residual spraying (IRS).Results711 health facilities contributed 20 962 facility reports over 30 months. After national distribution of 10.7 million LLINs and IRS in limited settings, malaria risk decreased from 25.6 to 16.7 cases per 100 people from 2018 to 2019 high transmission seasons, and rebounded to 23.2 in 2020, resulting in significant RDs of −8.9 in 2019 and −2.4 in 2020 as compared with 2018. Piperonyl butoxide (PBO)-treated LLINs were more effective than pyrethroid-treated LLINs, with adjusted RDs of −2.3 (95% CI −2.7 to −1.9) and −1.5 (95% CI −2.0 to −1.0) comparing 2019 and 2020 high transmission seasons to 2018. Use of IRS sustained protection with adjusted RDs of −1.4 (95% CI −2.0 to −0.9) and −2.8% (95% CI −3.5 to −2.2) relative to pyrethroid-treated LLINs. Overall, 12 of 28 districts (42.9%) experienced increases in malaria risk in from 2018 to 2020.ConclusionLLINs in Malawi have a limited effectiveness lifespan and IRS and PBO-treated LLINs perform better than pyrethroid-treated LLINs, perhaps due to net repurposing and insecticide-resistance. DHIS2 provides a compelling framework in which to examine localised malaria trends and evaluate ongoing interventions.


2019 ◽  
Author(s):  
Betwel John Msugupakulya ◽  
Emmanuel W. Kaindoa ◽  
Halfan S. Ngowo ◽  
Japhet M. Kihonda ◽  
Najat F. Kahamba ◽  
...  

Abstract Background Malaria control in Africa relies extensively on indoor residual spraying (IRS) and insecticide-treated nets (ITNs). IRS typically targets mosquitoes resting on walls, and in few cases, roofs and ceilings, using contact insecticides. Unfortunately, little attention is paid to where malaria vectors actually rest indoors, and how such knowledge could be used to improve IRS. This study investigated preferred resting surfaces of two major malaria vectors, Anopheles funestus and Anopheles arabiensis , inside four common house types in rural south-eastern Tanzania.Methodology The assessment was done inside 80 houses including: 20 with thatched roofs and mud walls, 20 with thatched roofs and un-plastered brick walls, 20 with metal roofs and un-plastered brick walls, and 20 with metal roofs and plastered brick walls, across four villages. In each house, resting mosquitoes were sampled in mornings (6am-8am), evenings (6pm-8pm) and at night (11pm-12.00am) using Prokopack aspirators from multiple surfaces (walls, undersides of roofs, floors, furniture, utensils, clothing, curtains and bed nets).Results Overall, only 26% of An. funestus and 18% of An. arabiensis were found on walls. In grass-thatched houses, 33-55% of An. funestus and 43-50% of An. arabiensis rested under roofs, while in metal-roofed houses, only 16-20% of An. funestus and 8-30% of An. arabiensis rested under roofs. Considering all data together, approximately 40% of mosquitoes rested on surfaces not typically targeted by IRS, i.e. floors, furniture, utensils, clothing and bed nets. These proportions were particularly high in metal-roofed houses (47-53% of An. funestus ; 60-66% of An. arabiensis ).Conclusion While IRS typically uses contact insecticides to target adult mosquitoes on walls, and occasionally roofs and ceilings, significant proportions of vectors rest on surfaces not usually sprayed. This gap exceeds one-third of malaria mosquitoes in grass-thatched houses, and can reach two-thirds in metal-roofed houses. Where field operations exclude roofs during IRS, the gaps can be much greater. In conclusion, there is need for locally-obtained data on mosquito resting behaviours and how these influence the overall impact and costs of IRS. This study also emphasizes the need for alternative approaches, e.g. house screening, which broadly tackle mosquitoes beyond areas reachable by IRS and ITNs.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Nelson Grisales ◽  
Rosemary S. Lees ◽  
James Maas ◽  
John C. Morgan ◽  
Dimitri W. Wangrawa ◽  
...  

Abstract Background The efficacy of insecticide-treated nets (ITNs) containing the insect growth regulator pyriproxyfen (PPF) and pyrethroid insecticides (PPF-ITNs) is being assessed in clinical trials to determine whether they provide greater protection from malaria than standard pyrethroid-treated ITNs in areas where mosquitoes are resistant to pyrethroids. Understanding the entomological mode of action of this new ITN class will aide interpretation of the results from these trials. Methods Anopheles gambiae sensu lato (s.l.) mosquitoes from a susceptible laboratory strain were exposed to PPF-treated netting 24 h, 6 h, and immediately prior to, or 24 h post blood feeding, and the impact on fecundity, fertility and longevity recorded. Pyrethroid-resistant populations were exposed to nets containing permethrin and PPF (PPF-ITNs) in cone bioassays and daily mortality recorded. Mosquitoes were also collected from inside houses pre- and post-distribution of PPF-ITNs in a clinical trial conduced in Burkina Faso; female An. gambiae s.l. were then assessed for fecundity and fertility. Results PPF exposure reduced the median adult lifespan of insecticide-susceptible mosquitoes by 4 to 5 days in all exposure times (p < 0.05) other than 6 h pre-blood meal and resulted in almost complete lifelong sterilization. The longevity of pyrethroid-resistant mosquitoes was also reduced by at least 5 days after exposure to PPF-ITNs compared to untreated nets, but was unaffected by exposure to standard pyrethroid only ITNs. A total of 386 blood-fed or gravid An. gambiae s.l. females were collected from five villages between 1 and 12 months before distribution of PPF-ITNs. Of these mosquitoes, 75% laid eggs and the remaining 25% appeared to have normal ovaries upon dissection. In contrast, only 8.6% of the 631 blood-fed or gravid An. gambiae s.l. collected post PPF-ITN distribution successfully oviposited; 276 (43.7%) did not oviposit but had apparently normal ovaries upon dissection, and 301 (47.7%) did not oviposit and had abnormal eggs upon dissection. Egg numbers were also significantly lower (average of 138/female prior distribution vs 85 post distribution, p < 0.05). Conclusion Exposure to a mixture of PPF and pyrethroids on netting shortens the lifespan of mosquitoes and reduces reproductive output. Sterilization of vectors lasted at least one year under operational conditions. These findings suggest a longer effective lifespan of PPF-pyrethroid nets than reported previously.


2019 ◽  
Author(s):  
Betwel John Msugupakulya ◽  
Emmanuel W. Kaindoa ◽  
Halfan S. Ngowo ◽  
Japhet M. Kihonda ◽  
Najat F. Kahamba ◽  
...  

Abstract Background Malaria control in Africa relies extensively on indoor residual spraying (IRS) and insecticide-treated nets (ITNs). IRS typically targets mosquitoes resting on walls, and in few cases, roofs and ceilings, using contact insecticides. Unfortunately, little attention is paid to where malaria vectors actually rest indoors, and how such knowledge could be used to improve IRS. This study investigated preferred resting surfaces of two major malaria vectors, Anopheles funestus and Anopheles arabiensis , inside four common house types in rural south-eastern Tanzania.Methodology The assessment was done inside 80 houses including: 20 with thatched roofs and mud walls, 20 with thatched roofs and un-plastered brick walls, 20 with metal roofs and un-plastered brick walls, and 20 with metal roofs and plastered brick walls, across four villages. In each house, resting mosquitoes were sampled in mornings (6am-8am), evenings (6pm-8pm) and at night (11pm-12.00am) using Prokopack aspirators from multiple surfaces (walls, undersides of roofs, floors, furniture, utensils, clothing, curtains and bed nets).Results Overall, only 26% of An. funestus and 18% of An. arabiensis were found on walls. In grass-thatched houses, 33-55% of An. funestus and 43-50% of An. arabiensis rested under roofs, while in metal-roofed houses, only 16-20% of An. funestus and 8-30% of An. arabiensis rested under roofs. Considering all data together, approximately 40% of mosquitoes rested on surfaces not typically targeted by IRS, i.e. floors, furniture, utensils, clothing and bed nets. These proportions were particularly high in metal-roofed houses (47-53% of An. funestus ; 60-66% of An. arabiensis ).Conclusion While IRS typically uses contact insecticides to target adult mosquitoes on walls, and occasionally roofs and ceilings, significant proportions of vectors rest on surfaces not usually sprayed. This gap exceeds one-third of malaria mosquitoes in grass-thatched houses, and can reach two-thirds in metal-roofed houses. Where field operations exclude roofs during IRS, the gaps can be much greater. In conclusion, there is need for locally-obtained data on mosquito resting behaviours and how these influence the overall impact and costs of IRS. This study also emphasizes the need for alternative approaches, e.g. house screening, which broadly tackle mosquitoes beyond areas reachable by IRS and ITNs.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Vicente Urbano Nsue Ndong Nchama ◽  
Ali Hamad Said ◽  
Ali Mtoro ◽  
Gertrudis Owono Bidjimi ◽  
Marta Alene Owono ◽  
...  

Abstract Background Extensive malaria control measures have been implemented on Bioko Island, Equatorial Guinea over the past 16 years, reducing parasite prevalence and malaria-related morbidity and mortality, but without achieving elimination. Malaria vaccines offer hope for reducing the burden to zero. Three phase 1/2 studies have been conducted successfully on Bioko Island to evaluate the safety and efficacy of whole Plasmodium falciparum (Pf) sporozoite (SPZ) malaria vaccines. A large, pivotal trial of the safety and efficacy of the radiation-attenuated Sanaria® PfSPZ Vaccine against P. falciparum is planned for 2022. This study assessed the incidence of malaria at the phase 3 study site and characterized the influence of socio-demographic factors on the burden of malaria to guide trial design. Methods A cohort of 240 randomly selected individuals aged 6 months to 45 years from selected areas of North Bioko Province, Bioko Island, was followed for 24 weeks after clearance of parasitaemia. Assessment of clinical presentation consistent with malaria and thick blood smears were performed every 2 weeks. Incidence of first and multiple malaria infections per person-time of follow-up was estimated, compared between age groups, and examined for associated socio-demographic risk factors. Results There were 58 malaria infection episodes observed during the follow up period, including 47 first and 11 repeat infections. The incidence of malaria was 0.25 [95% CI (0.19, 0.32)] and of first malaria was 0.23 [95% CI (0.17, 0.30)] per person per 24 weeks (0.22 in 6–59-month-olds, 0.26 in 5–17-year-olds, 0.20 in 18–45-year-olds). Incidence of first malaria with symptoms was 0.13 [95% CI (0.09, 0.19)] per person per 24 weeks (0.16 in 6–59-month-olds, 0.10 in 5–17-year-olds, 0.11 in 18–45-year-olds). Multivariate assessment showed that study area, gender, malaria positivity at screening, and household socioeconomic status independently predicted the observed incidence of malaria. Conclusion Despite intensive malaria control efforts on Bioko Island, local transmission remains and is spread evenly throughout age groups. These incidence rates indicate moderate malaria transmission which may be sufficient to support future larger trials of PfSPZ Vaccine. The long-term goal is to conduct mass vaccination programmes to halt transmission and eliminate P. falciparum malaria.


Zootaxa ◽  
2021 ◽  
Vol 4995 (3) ◽  
pp. 581-593
Author(s):  
KYU-TEK PARK ◽  
TIMM KARISCH

Five new species belonging to the subfamily Torodorinae of Lecithoceridae are described from Bioko Island (Equatorial Guinea), based on specimens which were collected during a short expedition on the island by the second author in 1994. The new species are three species of the genus Thubdora Park, 2018 (T. biocoica sp. nov., T. vernaculella sp. nov., and T. angustiala sp. nov.), and a new species of Ptilothyris Walsingham, 1891and Dragmatucha Meyrick, 1908 respectively (Ptylothyris ruicheensis sp. nov.; and Dragmatucha vulcaniella sp. nov.). In addition, Thubdora bilobella Park, 2018 is reported for the first time from Equatorial Guinea. Images for adults and the genitalia of all species are given.  


Sign in / Sign up

Export Citation Format

Share Document